Adenosine A2AR blockade prevents neuroinflammation-induced death of retinal ganglion cells caused by elevated pressure

[1]  S. Lewandowsky PLOS ONE 2013 , 2015 .

[2]  Â. R. Tomé,et al.  ATP as a multi-target danger signal in the brain , 2015, Front. Neurosci..

[3]  B. Lin,et al.  Fractalkine receptor regulates microglial neurotoxicity in an experimental mouse glaucoma model , 2014, Glia.

[4]  V. Sheffield,et al.  Mechanosensitive release of adenosine 5′‐triphosphate through pannexin channels and mechanosensitive upregulation of pannexin channels in optic nerve head astrocytes: A mechanism for purinergic involvement in chronic strain , 2014, Glia.

[5]  Francis Loth,et al.  Systemic inflammation regulates microglial responses to tissue damage in vivo , 2014, Glia.

[6]  R. Cunha,et al.  Role of Microglia Adenosine A2A Receptors in Retinal and Brain Neurodegenerative Diseases , 2014, Mediators of inflammation.

[7]  Rosa M. Ferrer-Martín,et al.  Microglial cells in organotypic cultures of developing and adult mouse retina and their relationship with cell death. , 2014, Experimental eye research.

[8]  N. Tian,et al.  From Mechanosensitivity to Inflammatory Responses: New Players in the Pathology of Glaucoma , 2014, Current eye research.

[9]  J. Caprioli Glaucoma: a disease of early cellular senescence. , 2013, Investigative ophthalmology & visual science.

[10]  J. Gonzales,et al.  Potential role of A2A adenosine receptor in traumatic optic neuropathy , 2013, Journal of Neuroimmunology.

[11]  S. Takai,et al.  P2X7 receptor activation may be involved in neuronal loss in the retinal ganglion cell layer after acute elevation of intraocular pressure in rats , 2013, Molecular vision.

[12]  C. Métin,et al.  Adenosine Receptor Antagonists Including Caffeine Alter Fetal Brain Development in Mice , 2013, Science Translational Medicine.

[13]  S. Koizumi,et al.  Microglia release ATP by exocytosis , 2013, Glia.

[14]  C. Müller,et al.  Ecto-5′-Nucleotidase (CD73)-Mediated Formation of Adenosine Is Critical for the Striatal Adenosine A2A Receptor Functions , 2013, The Journal of Neuroscience.

[15]  V. Porciatti,et al.  A new mouse model of inducible, chronic retinal ganglion cell dysfunction not associated with cell death. , 2013, Investigative ophthalmology & visual science.

[16]  D. Broadway,et al.  P2X7 receptor activation mediates retinal ganglion cell death in a human retina model of ischemic neurodegeneration. , 2013, Investigative ophthalmology & visual science.

[17]  N. Pfeiffer,et al.  Enhanced Insight into the Autoimmune Component of Glaucoma: IgG Autoantibody Accumulation and Pro-Inflammatory Conditions in Human Glaucomatous Retina , 2013, PloS one.

[18]  Catarina Gomes,et al.  Activation of microglial cells triggers a release of brain-derived neurotrophic factor (BDNF) inducing their proliferation in an adenosine A2A receptor-dependent manner: A2A receptor blockade prevents BDNF release and proliferation of microglia , 2013, Journal of Neuroinflammation.

[19]  J. Filosa,et al.  A quantitative spatiotemporal analysis of microglia morphology during ischemic stroke and reperfusion , 2013, Journal of Neuroinflammation.

[20]  Â. R. Tomé,et al.  Blockade of adenosine A2A receptors prevents interleukin-1β-induced exacerbation of neuronal toxicity through a p38 mitogen-activated protein kinase pathway , 2012, Journal of Neuroinflammation.

[21]  N. Pfeiffer,et al.  Retinal Ganglion Cell Loss Is Accompanied by Antibody Depositions and Increased Levels of Microglia after Immunization with Retinal Antigens , 2012, PloS one.

[22]  A. Laties,et al.  Neurons respond directly to mechanical deformation with pannexin‐mediated ATP release and autostimulation of P2X7 receptors , 2012, The Journal of physiology.

[23]  Joan W. Miller,et al.  Etanercept, a Widely Used Inhibitor of Tumor Necrosis Factor-α (TNF- α), Prevents Retinal Ganglion Cell Loss in a Rat Model of Glaucoma , 2012, PloS one.

[24]  L. Levin,et al.  Clinical evidence for neuroprotection in glaucoma. , 2011, American journal of ophthalmology.

[25]  A. Laties,et al.  Sustained elevation of extracellular ATP in aqueous humor from humans with primary chronic angle-closure glaucoma. , 2011, Experimental eye research.

[26]  K. Cho,et al.  Glial cell response and iNOS expression in the optic nerve head and retina of the rat following acute high IOP ischemia–reperfusion , 2011, Brain Research.

[27]  A. Kraft,et al.  Features of Microglia and Neuroinflammation Relevant to Environmental Exposure and Neurotoxicity , 2011, International journal of environmental research and public health.

[28]  C. Luu,et al.  Retinal ganglion cell death is induced by microglia derived pro‐inflammatory cytokines in the hypoxic neonatal retina , 2011, The Journal of pathology.

[29]  K. Martin,et al.  Use of an adult rat retinal explant model for screening of potential retinal ganglion cell neuroprotective therapies. , 2011, Investigative ophthalmology & visual science.

[30]  Catarina Gomes,et al.  Adenosine receptors and brain diseases: neuroprotection and neurodegeneration. , 2011, Biochimica et biophysica acta.

[31]  J. T. Erichsen,et al.  Involvement of the CD200 receptor complex in microglia activation in experimental glaucoma. , 2011, Experimental eye research.

[32]  R. Caldwell,et al.  A(₂A) adenosine receptor (A(₂A)AR) as a therapeutic target in diabetic retinopathy. , 2011, The American journal of pathology.

[33]  H. Kettenmann,et al.  Physiology of microglia. , 2011, Physiological reviews.

[34]  Matthew A. Hibbs,et al.  Molecular clustering identifies complement and endothelin induction as early events in a mouse model of glaucoma. , 2011, The Journal of clinical investigation.

[35]  M. Lynch,et al.  Adenosine A2A receptors control neuroinflammation and consequent hippocampal neuronal dysfunction , 2011, Journal of neurochemistry.

[36]  M. Vidal-Sanz,et al.  Brain derived neurotrophic factor maintains Brn3a expression in axotomized rat retinal ganglion cells. , 2011, Experimental eye research.

[37]  B. Fredholm,et al.  International Union of Basic and Clinical Pharmacology. LXXXI. Nomenclature and Classification of Adenosine Receptors—An Update , 2011, Pharmacological Reviews.

[38]  M. Vetter,et al.  Early microglia activation in a mouse model of chronic glaucoma , 2011, The Journal of comparative neurology.

[39]  G. Liou,et al.  Retinal Microglial Activation and Inflammation Induced by Amadori-Glycated Albumin in a Rat Model of Diabetes , 2011, Diabetes.

[40]  J. Mallol,et al.  Gi protein coupling to adenosine A1–A2A receptor heteromers in human brain caudate nucleus , 2010, Journal of neurochemistry.

[41]  Yan Zhao,et al.  Local Glutamate Level Dictates Adenosine A2A Receptor Regulation of Neuroinflammation and Traumatic Brain Injury , 2010, The Journal of Neuroscience.

[42]  O. Gavet,et al.  Progressive activation of CyclinB1-Cdk1 coordinates entry to mitosis. , 2010, Developmental cell.

[43]  R. Cunha,et al.  Adenosine A2A Receptor Blockade Prevents Synaptotoxicity and Memory Dysfunction Caused by β-Amyloid Peptides via p38 Mitogen-Activated Protein Kinase Pathway , 2009, The Journal of Neuroscience.

[44]  W. Kamphuis,et al.  Diabetes changes the levels of ionotropic glutamate receptors in the rat retina , 2009, Molecular vision.

[45]  M. Vidal-Sanz,et al.  Brn3a as a marker of retinal ganglion cells: qualitative and quantitative time course studies in naive and optic nerve-injured retinas. , 2009, Investigative ophthalmology & visual science.

[46]  C. Mitchell,et al.  Elevated pressure triggers a physiological release of ATP from the retina: Possible role for pannexin hemichannels , 2008, Neuroscience.

[47]  K. Martin,et al.  Development and characterization of an adult retinal explant organotypic tissue culture system as an in vitro intraocular stem cell transplantation model. , 2008, Investigative ophthalmology & visual science.

[48]  K. Jacobson,et al.  Stimulation of the P2X7 receptor kills rat retinal ganglion cells in vivo. , 2010, Experimental eye research.

[49]  David J. Calkins,et al.  Reduced retina microglial activation and improved optic nerve integrity with minocycline treatment in the DBA/2J mouse model of glaucoma. , 2008, Investigative ophthalmology & visual science.

[50]  Wei Li,et al.  Chronic but not acute treatment with caffeine attenuates traumatic brain injury in the mouse cortical impact model , 2008, Neuroscience.

[51]  R. Cunha,et al.  Adenosine A2A Receptors Are Essential for Long-Term Potentiation of NMDA-EPSCs at Hippocampal Mossy Fiber Synapses , 2008, Neuron.

[52]  G. Brown Mechanisms of inflammatory neurodegeneration: iNOS and NADPH oxidase. , 2007, Biochemical Society transactions.

[53]  A. Laties,et al.  Acute increase of intraocular pressure releases ATP into the anterior chamber. , 2007, Experimental eye research.

[54]  R. Cunha,et al.  Blockade of adenosine A2A receptors prevents staurosporine-induced apoptosis of rat hippocampal neurons , 2007, Neurobiology of Disease.

[55]  D. Blum,et al.  Effects of the Adenosine A2A Receptor Antagonist SCH 58621 on Cyclooxygenase-2 Expression, Glial Activation, and Brain-Derived Neurotrophic Factor Availability in a Rat Model of Striatal Neurodegeneration , 2007, Journal of neuropathology and experimental neurology.

[56]  F. Di Virgilio,et al.  Acute retinal ganglion cell injury caused by intraocular pressure spikes is mediated by endogenous extracellular ATP , 2007, The European journal of neuroscience.

[57]  David J. Calkins,et al.  Pressure-induced regulation of IL-6 in retinal glial cells: involvement of the ubiquitin/proteasome pathway and NFkappaB. , 2006, Investigative ophthalmology & visual science.

[58]  Pál Pacher,et al.  Adenosine receptors: therapeutic aspects for inflammatory and immune diseases , 2006, Nature Reviews Drug Discovery.

[59]  David J. Calkins,et al.  Interleukin-6 protects retinal ganglion cells from pressure-induced death. , 2006, Investigative ophthalmology & visual science.

[60]  M. Dailey,et al.  Early activation, motility, and homing of neonatal microglia to injured neurons does not require protein synthesis , 2006, Glia.

[61]  R. Moratalla,et al.  Adenosine A2A receptor stimulation potentiates nitric oxide release by activated microglia , 2005, Journal of neurochemistry.

[62]  R. Cunha,et al.  Different roles of adenosine A1, A2A and A3 receptors in controlling kainate-induced toxicity in cortical cultured neurons , 2005, Neurochemistry International.

[63]  R. Cunha,et al.  Neuroprotection by adenosine in the brain: From A1 receptor activation to A2A receptor blockade , 2005, Purinergic Signalling.

[64]  S. Resnikoff,et al.  Global data on visual impairment in the year 2002. , 2004, Bulletin of the World Health Organization.

[65]  B. Fredholm,et al.  Binding of adenosine receptor ligands to brain of adenosine receptor knock-out mice: evidence that CGS 21680 binds to A1 receptors in hippocampus , 2004, Naunyn-Schmiedeberg's Archives of Pharmacology.

[66]  Claus Lindbjerg Andersen,et al.  Normalization of Real-Time Quantitative Reverse Transcription-PCR Data: A Model-Based Variance Estimation Approach to Identify Genes Suited for Normalization, Applied to Bladder and Colon Cancer Data Sets , 2004, Cancer Research.

[67]  S. Isenmann,et al.  A novel primary culture technique for adult retina allows for evaluation of CNS axon regeneration in rodents , 2004, Journal of Neuroscience Methods.

[68]  Manfred Thiel,et al.  Physiological control of immune response and inflammatory tissue damage by hypoxia-inducible factors and adenosine A2A receptors. , 2004, Annual review of immunology.

[69]  S. Schiffmann,et al.  A Dual Role of Adenosine A2A Receptors in 3-Nitropropionic Acid-Induced Striatal Lesions: Implications for the Neuroprotective Potential of A2A Antagonists , 2003, The Journal of Neuroscience.

[70]  Eric A Newman,et al.  Glial Cell Inhibition of Neurons by Release of ATP , 2003, The Journal of Neuroscience.

[71]  S. Thanos,et al.  Detection of early neuron degeneration and accompanying microglial responses in the retina of a rat model of glaucoma. , 2002, Investigative ophthalmology & visual science.

[72]  Lin Wang,et al.  Immunohistologic evidence for retinal glial cell changes in human glaucoma. , 2002, Investigative ophthalmology & visual science.

[73]  Thomas D. Schmittgen,et al.  Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. , 2001, Methods.

[74]  H. Hara,et al.  Interleukin-1β mediates ischemic injury in the rat retina , 2001 .

[75]  R. Stone,et al.  A1‐, A2A‐ and A3‐subtype adenosine receptors modulate intraocular pressure in the mouse , 2001, British journal of pharmacology.

[76]  M. Wax,et al.  TNF-alpha and TNF-alpha receptor-1 in the retina of normal and glaucomatous eyes. , 2001, Investigative ophthalmology & visual science.

[77]  R. Paes-de-Carvalho,et al.  Long-term activation of adenosine A2a receptors blocks glutamate excitotoxicity in cultures of avian retinal neurons , 2001, Brain Research.

[78]  M. Wax,et al.  Increased Production of Tumor Necrosis Factor-a by Glial Cells Exposed to Simulated Ischemia or Elevated Hydrostatic Pressure Induces Apoptosis in Cocultured Retinal Ganglion Cells , 2000 .

[79]  R. Cunha,et al.  Modification by Arachidonic Acid of Extracellular Adenosine Metabolism and Neuromodulatory Action in the Rat Hippocampus* , 2000, The Journal of Biological Chemistry.

[80]  A. Neufeld,et al.  Tumor necrosis factor‐α: A potentially neurodestructive cytokine produced by glia in the human glaucomatous optic nerve head , 2000 .

[81]  A. Neufeld Microglia in the optic nerve head and the region of parapapillary chorioretinal atrophy in glaucoma. , 1999, Archives of ophthalmology.

[82]  A. Engel,et al.  PloS One 2012 , 2015 .

[83]  R. Cunha,et al.  Blockade of adenosine A(2A) receptors prevents staurosporine-induced apoptosis of rat hippocampal neurons. , 2007, Neurobiology of disease.

[84]  M. Parravano,et al.  Interleukin-1beta tear concentration in glaucomatous and ocular hypertensive patients treated with preservative-free nonselective beta-blockers. , 2005, American journal of ophthalmology.

[85]  H. Hara,et al.  Interleukin-1beta mediates ischemic injury in the rat retina. , 2001, Experimental eye research.

[86]  M. Wax,et al.  TNF-a and TNF-a Receptor-1 in the Retina of Normal and Glaucomatous Eyes , 2001 .