An (18/11)n upper bound for sorting by prefix reversals

The pancake problem asks for the minimum number of prefix reversals sufficient for sorting any permutation of length n. We improve the upper bound for the pancake problem to (18/11)n+O(1)?(1.6363)n.

[1]  Ivan Hal Sudborough,et al.  On the Diameter of the Pancake Network , 1997, J. Algorithms.

[2]  Keiichi Kaneko,et al.  Computing the diameters of 14- and 15-pancake graphs , 2005, 8th International Symposium on Parallel Architectures,Algorithms and Networks (ISPAN'05).

[3]  Christos H. Papadimitriou,et al.  Bounds for sorting by prefix reversal , 1979, Discret. Math..

[4]  N. J. A. Sloane,et al.  The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..

[5]  Manuel Blum,et al.  on the Problem of Sorting Burnt Pancakes , 1995, Discret. Appl. Math..

[6]  Sheldon B. Akers,et al.  A Group-Theoretic Model for Symmetric Interconnection Networks , 1989, IEEE Trans. Computers.