Why and How Bacteria Localize Proteins

Despite their small size, bacteria have a remarkably intricate internal organization. Bacteria deploy proteins and protein complexes to particular locations and do so in a dynamic manner in lockstep with the organized deployment of their chromosome. The dynamic subcellular localization of protein complexes is an integral feature of regulatory processes of bacterial cells.

[1]  R. B. Jensen,et al.  The Caulobacter crescentus smc gene is required for cell cycle progression and chromosome segregation. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[2]  Sung-Hou Kim,et al.  Four-helical-bundle structure of the cytoplasmic domain of a serine chemotaxis receptor , 1999, Nature.

[3]  P. D. de Boer,et al.  SlmA, a nucleoid-associated, FtsZ binding protein required for blocking septal ring assembly over Chromosomes in E. coli. , 2005, Molecular cell.

[4]  R. B. Jensen,et al.  Location and architecture of the Caulobacter crescentus chemoreceptor array , 2008, Molecular microbiology.

[5]  C. Jacobs-Wagner,et al.  The Bacterial Cytoskeleton An Intermediate Filament-Like Function in Cell Shape , 2003, Cell.

[6]  Kumaran S Ramamurthi,et al.  Negative membrane curvature as a cue for subcellular localization of a bacterial protein , 2009, Proceedings of the National Academy of Sciences.

[7]  J. E. Patrick,et al.  MinJ (YvjD) is a topological determinant of cell division in Bacillus subtilis , 2008, Molecular microbiology.

[8]  L. Shapiro,et al.  MipZ, a Spatial Regulator Coordinating Chromosome Segregation with Cell Division in Caulobacter , 2006, Cell.

[9]  Hajime Kobayashi,et al.  Sinorhizobium meliloti CpdR1 is critical for co‐ordinating cell cycle progression and the symbiotic chronic infection , 2009, Molecular microbiology.

[10]  A. Grossman,et al.  Chromosome arrangement within a bacterium , 1998, Current Biology.

[11]  L. Shapiro,et al.  Negative control of bacterial DNA replication by a cell cycle regulatory protein that binds at the chromosome origin. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[12]  L. Shapiro,et al.  Polar localization of a bacterial chemoreceptor. , 1992, Genes & development.

[13]  J. Errington,et al.  Bacillus subtilis SpoIIIE protein required for DNA segregation during asymmetric cell division. , 1994, Science.

[14]  J. S. Parkinson,et al.  Collaborative signaling by mixed chemoreceptor teams in Escherichia coli , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[15]  Yoshikazu Kawai,et al.  Noc protein binds to specific DNA sequences to coordinate cell division with chromosome segregation , 2009, The EMBO journal.

[16]  A. Grossman,et al.  Bipolar Localization of the Replication Origin Regions of Chromosomes in Vegetative and Sporulating Cells of B. subtilis , 1997, Cell.

[17]  Howard A. Stone,et al.  Geometric Cue for Protein Localization in a Bacterium , 2009, Science.

[18]  Patrick T McGrath,et al.  A phospho-signaling pathway controls the localization and activity of a protease complex critical for bacterial cell cycle progression. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[19]  W. Margolin,et al.  Effects of Perturbing Nucleoid Structure on Nucleoid Occlusion-Mediated Toporegulation of FtsZ Ring Assembly , 2004, Journal of bacteriology.

[20]  Lucy Shapiro,et al.  Cell Type-Specific Phosphorylation and Proteolysis of a Transcriptional Regulator Controls the G1-to-S Transition in a Bacterial Cell Cycle , 1997, Cell.

[21]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[22]  E. Huitema,et al.  Bacterial Birth Scar Proteins Mark Future Flagellum Assembly Site , 2006, Cell.

[23]  Patrick T. McGrath,et al.  Rapid and sequential movement of individual chromosomal loci to specific subcellular locations during bacterial DNA replication. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[24]  G. Jensen,et al.  A Self-Associating Protein Critical for Chromosome Attachment, Division, and Polar Organization in Caulobacter , 2008, Cell.

[25]  R. Losick,et al.  Evidence that subcellular localization of a bacterial membrane protein is achieved by diffusion and capture , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[26]  Sophie G. Martin,et al.  Polar gradients of the DYRK-family kinase Pom1 couple cell length with the cell cycle , 2009, Nature.

[27]  J. Errington,et al.  Polar localization of the MinD protein of Bacillus subtilis and its role in selection of the mid-cell division site. , 1998, Genes & development.

[28]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[29]  L. Shapiro,et al.  A Polymeric Protein Anchors the Chromosomal Origin/ParB Complex at a Bacterial Cell Pole , 2008, Cell.

[30]  R. Losick,et al.  Polar Localization and Compartmentalization of ClpP Proteases during Growth and Sporulation in Bacillus subtilis , 2008, Journal of bacteriology.

[31]  J. Errington,et al.  A novel component of the division‐site selection system of Bacillus subtilis and a new mode of action for the division inhibitor MinCD , 2008, Molecular microbiology.

[32]  R. Losick,et al.  RacA, a Bacterial Protein That Anchors Chromosomes to the Cell Poles , 2002, Science.

[33]  S. Subramaniam,et al.  Direct visualization of Escherichia coli chemotaxis receptor arrays using cryo-electron microscopy , 2007, Proceedings of the National Academy of Sciences.

[34]  Paul Nurse,et al.  A spatial gradient coordinates cell size and mitotic entry in fission yeast , 2009, Nature.

[35]  Ned S. Wingreen,et al.  Self-Organization of the Escherichia coli Chemotaxis Network Imaged with Super-Resolution Light Microscopy , 2009, PLoS biology.

[36]  U. Jenal,et al.  An essential protease involved in bacterial cell‐cycle control , 1998, The EMBO journal.

[37]  Harley H. McAdams,et al.  A Dynamically Localized Protease Complex and a Polar Specificity Factor Control a Cell Cycle Master Regulator , 2006, Cell.

[38]  J. Errington,et al.  RacA and the Soj‐Spo0J system combine to effect polar chromosome segregation in sporulating Bacillus subtilis , 2003, Molecular microbiology.

[39]  H. Niki,et al.  Dynamic organization of chromosomal DNA in Escherichia coli. , 2000, Genes & development.

[40]  J. Lutkenhaus,et al.  Assembly dynamics of the bacterial MinCDE system and spatial regulation of the Z ring. , 2007, Annual review of biochemistry.

[41]  J. Errington,et al.  Localisation of DivIVA by targeting to negatively curved membranes , 2009, The EMBO journal.

[42]  E M Judd,et al.  Visualization of the movement of single histidine kinase molecules in live Caulobacter cells. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[43]  H. Lam,et al.  A Landmark Protein Essential for Establishing and Perpetuating the Polarity of a Bacterial Cell , 2006, Cell.

[44]  S. Lybarger,et al.  Docking and Assembly of the Type II Secretion Complex of Vibrio cholerae , 2009, Journal of bacteriology.

[45]  L. Shapiro,et al.  Polar location of the chemoreceptor complex in the Escherichia coli cell. , 1993, Science.

[46]  M. Waldor,et al.  Distinct segregation dynamics of the two Vibrio cholerae chromosomes , 2004, Molecular microbiology.

[47]  Conformational suppression of inter-receptor signaling defects. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[48]  Dennis Bray,et al.  Molecular model of a lattice of signalling proteins involved in bacterial chemotaxis , 2000, Nature Cell Biology.

[49]  J. Irgon,et al.  Quantitative genome-scale analysis of protein localization in an asymmetric bacterium , 2009, Proceedings of the National Academy of Sciences.

[50]  T. Schwede,et al.  Second messenger-mediated spatiotemporal control of protein degradation regulates bacterial cell cycle progression. , 2009, Genes & development.

[51]  J. Errington,et al.  Coordination of Cell Division and Chromosome Segregation by a Nucleoid Occlusion Protein in Bacillus subtilis , 2004, Cell.