Learning conditional preference network from noisy samples using hypothesis testing

The problem of learning Conditional Preference Networks (CP-nets) from a set of pairwise comparisons between outcomes has received great attention recently. However, because of the randomicity of the users' behaviors or the observation errors, there exists some noise (errors) in the training samples. Most existing methods neglect to handle the case with noisy samples. In this work, we introduce a new model of learning CP-nets from noisy samples. Based on chi-squared testing, we propose an algorithm to solve this problem in polynomial time. We prove that the obtained CP-net converges in mean to initial CP-net as sample size increases. The proposed method is verified on both simulated data and real data. Compared with the previous methods, our method achieves more accurate results on noisy sample sets.

[1]  Yann Chevaleyre,et al.  Learning Ordinal Preferences on Multiattribute Domains: The Case of CP-nets , 2010, Preference Learning.

[2]  W. Bruce Croft,et al.  Linear feature-based models for information retrieval , 2007, Information Retrieval.

[3]  Bruno Zanuttini,et al.  Learning Conditional Preference Networks with Queries , 2009, IJCAI.

[4]  Marie desJardins,et al.  More-or-Less CP-Networks , 2007, UAI.

[5]  Bruno Zanuttini,et al.  Learning conditional preference networks , 2010, Artif. Intell..

[6]  Ronen I. Brafman,et al.  UCP-Networks: A Directed Graphical Representation of Conditional Utilities , 2001, UAI.

[7]  Qiang Wu,et al.  Adapting boosting for information retrieval measures , 2010, Information Retrieval.

[8]  Tie-Yan Liu,et al.  Learning to rank: from pairwise approach to listwise approach , 2007, ICML '07.

[9]  Nic Wilson,et al.  Extending CP-Nets with Stronger Conditional Preference Statements , 2004, AAAI.

[10]  Huseyin Polat,et al.  Estimating NBC-based recommendations on arbitrarily partitioned data with privacy , 2012, Knowl. Based Syst..

[11]  Jérôme Lang,et al.  Learning preference relations over combinatorial domains , 2008 .

[12]  Ronen I. Brafman,et al.  Reasoning With Conditional Ceteris Paribus Preference Statements , 1999, UAI.

[13]  Ronen I. Brafman,et al.  On Graphical Modeling of Preference and Importance , 2011, J. Artif. Intell. Res..

[14]  Michael Schmitt,et al.  On the Complexity of Learning Lexicographic Strategies , 2006, J. Mach. Learn. Res..

[15]  Thomas J. Walsh,et al.  Democratic approximation of lexicographic preference models , 2011, Artif. Intell..

[16]  Shotaro Akaho,et al.  Supervised ordering - an empirical survey , 2005, Fifth IEEE International Conference on Data Mining (ICDM'05).

[17]  William W. Cohen,et al.  A Meta-Learning Approach for Robust Rank Learning , 2008 .

[18]  Isis Truck,et al.  LCP-Nets: A Linguistic Approach for Non-functional Preferences in a Semantic SOA Environment , 2008, J. Univers. Comput. Sci..

[19]  J. Friedman Greedy function approximation: A gradient boosting machine. , 2001 .

[20]  Tie-Yan Liu,et al.  Statistical Consistency of Top-k Ranking , 2009, NIPS.

[21]  Qiang Wu,et al.  Learning to Rank Using an Ensemble of Lambda-Gradient Models , 2010, Yahoo! Learning to Rank Challenge.

[22]  Craig Boutilier,et al.  CP-nets: a tool for represent-ing and reasoning with conditional ceteris paribus state-ments , 2004 .

[23]  Gregory N. Hullender,et al.  Learning to rank using gradient descent , 2005, ICML.

[24]  P. Patnaik The Non-central X^2- and F- distribution and Their Applications , 1949 .

[25]  Tao Qin,et al.  Ranking with multiple hyperplanes , 2007, SIGIR.

[26]  Henri Prade,et al.  Relaxing Ceteris Paribus Preferences with Partially Ordered Priorities , 2007, ECSQARU.

[27]  Thorsten Joachims,et al.  Optimizing search engines using clickthrough data , 2002, KDD.

[28]  Huayou Chen,et al.  On compatibility of uncertain additive linguistic preference relations and its application in the group decision making , 2011, Knowl. Based Syst..

[29]  Ronen I. Brafman,et al.  Reasoning with conditional ceteris paribus statements , 1999, UAI 1999.

[30]  Vincenzo Moscato,et al.  Towards a user based recommendation strategy for digital ecosystems , 2013, Knowl. Based Syst..

[31]  Hang Li,et al.  AdaRank: a boosting algorithm for information retrieval , 2007, SIGIR.

[32]  Yoram Singer,et al.  An Efficient Boosting Algorithm for Combining Preferences by , 2013 .

[33]  Tao Qin,et al.  FRank: a ranking method with fidelity loss , 2007, SIGIR.

[34]  K. Obermayer,et al.  Learning Preference Relations for Information Retrieval , 1998 .

[35]  Jan Chomicki,et al.  Contracting preference relations for database applications , 2009, Artif. Intell..

[36]  Jérôme Lang,et al.  The Complexity of Learning Separable ceteris paribus Preferences , 2009, IJCAI.

[37]  Ali Emrouznejad,et al.  Aggregating preference ranking with fuzzy Data Envelopment Analysis , 2010, Knowl. Based Syst..

[38]  Toshihiro Kamishima,et al.  Nantonac collaborative filtering: recommendation based on order responses , 2003, KDD '03.

[39]  Loizos Michael,et al.  Ceteris Paribus Preference Elicitation with Predictive Guarantees , 2009, IJCAI.

[40]  Thomas Hofmann,et al.  Learning to Rank with Nonsmooth Cost Functions , 2006, NIPS.

[41]  Tsutomu Hirao,et al.  Order SVM: a kernel method for order learning based on generalized order statistics , 2005, Systems and Computers in Japan.

[42]  P. Patnaik THE NON-CENTRAL χ2- AND F-DISTRIBUTIONS AND THEIR APPLICATIONS , 1949 .

[43]  Yoram Singer,et al.  Learning to Order Things , 1997, NIPS.