Quadratic independence of coordinate functions of certain homogeneous spaces and action of compact quantum groups

[1]  V. Gayral,et al.  Deformation quantization for actions of Qpd , 2015 .

[2]  Pavel Etingof,et al.  Semisimple Hopf actions on commutative domains , 2013, 1301.4161.

[3]  Huichi Huang Faithful compact quantum group actions on connected compact metrizable spaces , 2012, 1202.1175.

[4]  T. Banica,et al.  Quantum isometries and group dual subgroups , 2012, 1201.3392.

[5]  Adam G. Skalski,et al.  Quantum Isometry Groups of 0- Dimensional Manifolds , 2008, 0807.4288.

[6]  Debashish Goswami,et al.  Quantum Isometry Groups: Examples and Computations , 2007, 0707.2648.

[7]  Debashish Goswami Quantum Group of Isometries in Classical and Noncommutative Geometry , 2007, 0704.0041.

[8]  T. Banica Quantum automorphism groups of homogeneous graphs , 2003, math/0311402.

[9]  T. Banica Quantum automorphism groups of small metric spaces , 2003, math/0304025.

[10]  Shuzhou Wang,et al.  Quantum Symmetry Groups of Finite Spaces , 1998, math/9807091.

[11]  Ann Maes,et al.  Notes on Compact Quantum Groups , 1998, math/9803122.

[12]  Shuzhou Wang Deformations of compact quantum groups via Rieffel's quantization , 1996 .

[13]  P. Podlés Symmetries of quantum spaces. Subgroups and quotient spaces of quantumSU(2) andSO(3) groups , 1994, hep-th/9402069.

[14]  M. Rieffel Deformation Quantization for Actions of R ]D , 1993 .

[15]  W. Ledermann INTRODUCTION TO LIE ALGEBRAS AND REPRESENTATION THEORY , 1974 .

[16]  J. Humphreys Introduction to Lie Algebras and Representation Theory , 1973 .

[17]  S. Helgason Differential Geometry, Lie Groups, and Symmetric Spaces , 1978 .