Quadratic independence of coordinate functions of certain homogeneous spaces and action of compact quantum groups
暂无分享,去创建一个
[1] V. Gayral,et al. Deformation quantization for actions of Qpd , 2015 .
[2] Pavel Etingof,et al. Semisimple Hopf actions on commutative domains , 2013, 1301.4161.
[3] Huichi Huang. Faithful compact quantum group actions on connected compact metrizable spaces , 2012, 1202.1175.
[4] T. Banica,et al. Quantum isometries and group dual subgroups , 2012, 1201.3392.
[5] Adam G. Skalski,et al. Quantum Isometry Groups of 0- Dimensional Manifolds , 2008, 0807.4288.
[6] Debashish Goswami,et al. Quantum Isometry Groups: Examples and Computations , 2007, 0707.2648.
[7] Debashish Goswami. Quantum Group of Isometries in Classical and Noncommutative Geometry , 2007, 0704.0041.
[8] T. Banica. Quantum automorphism groups of homogeneous graphs , 2003, math/0311402.
[9] T. Banica. Quantum automorphism groups of small metric spaces , 2003, math/0304025.
[10] Shuzhou Wang,et al. Quantum Symmetry Groups of Finite Spaces , 1998, math/9807091.
[11] Ann Maes,et al. Notes on Compact Quantum Groups , 1998, math/9803122.
[12] Shuzhou Wang. Deformations of compact quantum groups via Rieffel's quantization , 1996 .
[13] P. Podlés. Symmetries of quantum spaces. Subgroups and quotient spaces of quantumSU(2) andSO(3) groups , 1994, hep-th/9402069.
[14] M. Rieffel. Deformation Quantization for Actions of R ]D , 1993 .
[15] W. Ledermann. INTRODUCTION TO LIE ALGEBRAS AND REPRESENTATION THEORY , 1974 .
[16] J. Humphreys. Introduction to Lie Algebras and Representation Theory , 1973 .
[17] S. Helgason. Differential Geometry, Lie Groups, and Symmetric Spaces , 1978 .