Bona Fide Riesz Projections for Density Estimation

The projection of sample measurements onto a reconstruction space represented by a basis on a regular grid is a powerful and simple approach to estimate a probability density function. In this paper, we focus on Riesz bases and propose a projection operator that, in contrast to previous works, guarantees the bona fide properties for the estimate, namely, non-negativity and total probability mass 1. Our bona fide projection is defined as a convex problem. We propose solution techniques and evaluate them. Results suggest an improved performance, specifically in circumstances prone to rippling effects.

[1]  Federico Ferraccioli,et al.  Nonparametric density estimation over complicated domains , 2021, Journal of the Royal Statistical Society: Series B (Statistical Methodology).

[2]  Duy Nguyen,et al.  Nonparametric Density Estimation and Bandwidth Selection with B-spline bases: a Novel Galerkin Method , 2021, Comput. Stat. Data Anal..

[3]  Jaime Fern'andez del R'io,et al.  Array programming with NumPy , 2020, Nature.

[4]  Michael Unser,et al.  A Note on BIBO Stability , 2020, IEEE Transactions on Signal Processing.

[5]  Joel Nothman,et al.  SciPy 1.0-Fundamental Algorithms for Scientific Computing in Python , 2019, ArXiv.

[6]  Zhenyu Cui,et al.  NONPARAMETRIC DENSITY ESTIMATION BY B-SPLINE DUALITY , 2019, Econometric Theory.

[7]  Zhipeng Wang,et al.  Nonparametric density estimation for high‐dimensional data—Algorithms and applications , 2019, WIREs Computational Statistics.

[8]  B. Póczos,et al.  Nonparametric Density Estimation&Convergence Rates for GANs under Besov IPM Losses , 2019, 1902.03511.

[9]  Stephen P. Boyd,et al.  CVXPY: A Python-Embedded Modeling Language for Convex Optimization , 2016, J. Mach. Learn. Res..

[10]  Yonina C. Eldar Sampling Theory: Beyond Bandlimited Systems , 2015 .

[11]  Dávid Papp,et al.  Shape-Constrained Estimation Using Nonnegative Splines , 2014 .

[12]  Dávid Papp,et al.  Estimating arrival rate of nonhomogeneous Poisson processes with semidefinite programming , 2013, Ann. Oper. Res..

[13]  Teruko Takada,et al.  Asymptotic and Qualitative Performance of Non-Parametric Density Estimators: A Comparative Study , 2008 .

[14]  Gábor Rudolf,et al.  Arrival rate approximation by nonnegative cubic splines , 2005, 2005 IEEE International Conference on Electro Information Technology.

[15]  Thierry Blu,et al.  Quantitative L/sup 2/ approximation error of a probability density estimate given by its samples , 2004, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[16]  M. Unser Sampling-50 years after Shannon , 2000, Proceedings of the IEEE.

[17]  Thierry Blu,et al.  Quantitative Fourier Analysis of Approximation Techniques : Part I — Interpolators and Projectors , 1999 .

[18]  Michael Unser,et al.  A general sampling theory for nonideal acquisition devices , 1994, IEEE Trans. Signal Process..

[19]  A. Izenman Recent Developments in Nonparametric Density Estimation , 1991 .