New horizons for glass formation and stability.

It has long been thought impossible for pure metals to form stable glasses. Recent work supports earlier evidence of glass formation in pure metals, shows the potential for devices based on rapid glass–crystal phase change, and highlights the lack of an adequate theory for fast crystal growth.

[1]  G. Wilde,et al.  Nanocrystallization in a shear band: An in situ investigation , 2011 .

[2]  Li-Min Wang,et al.  Diffusion-controlled crystal growth in deeply undercooled melt on approaching the glass transition , 2011 .

[3]  Matthias Wuttig,et al.  Measurement of crystal growth velocity in a melt-quenched phase-change material , 2013, Nature Communications.

[4]  J. D. de Pablo,et al.  Molecular modeling of vapor-deposited polymer glasses. , 2014, The Journal of chemical physics.

[5]  R. Averback,et al.  Kinetic stages in the crystallization of deeply undercooled body-centered-cubic and face-centered-cubic metals , 2010 .

[6]  D. Herlach Metastable Solids from Undercooled Melts , 2006 .

[7]  Klaus H. Behrndt,et al.  Formation of Amorphous Films , 1970 .

[8]  T. Kelly,et al.  The solidification structures in submicron droplets of FeCo alloys , 1991 .

[9]  Andrew Hoff,et al.  Compositional landscape for glass formation in metal alloys , 2014, Proceedings of the National Academy of Sciences.

[10]  A. L. Greer,et al.  Fast and slow crystal growth kinetics in glass-forming melts. , 2014, The Journal of chemical physics.

[11]  Eric Pop,et al.  Phase change materials and phase change memory , 2014 .

[12]  M. Wuttig,et al.  Phase-change materials for rewriteable data storage. , 2007, Nature materials.

[13]  Sam R. Coriell,et al.  Relative roles of heat transport and interface rearrangement rates in the rapid growth of crystals in undercooled melts , 1982 .

[14]  W. Goddard,et al.  Synthesis of single-component metallic glasses by thermal spray of nanodroplets on amorphous substrates , 2012 .

[15]  Peter Harrowell,et al.  Perspective: Supercooled liquids and glasses. , 2012, The Journal of chemical physics.

[16]  Behrad Gholipour,et al.  Characterization of supercooled liquid Ge2Sb2Te5 and its crystallization by ultrafast-heating calorimetry. , 2012, Nature materials.

[17]  A. L. Greer,et al.  Structural effects of shot-peening in bulk metallic glasses , 2009 .

[18]  W. Buckel,et al.  Einfluß der Kondensation bei tiefen Temperaturen auf den elektrischen Widerstand und die Supraleitung für verschiedene Metalle , 1954 .

[19]  M. Wuttig Phase change materials: Chalcogenides with remarkable properties due to an unconventional bonding mechanism , 2012 .

[20]  D. Herlach,et al.  Rapid solidification: in situ diagnostics and theoretical modelling , 2007 .

[21]  A. L. Greer,et al.  Phase selection, growth and interface kinetics in undercooled Fe-Ni melt droplets , 1997 .

[22]  Matthias Wuttig,et al.  How fragility makes phase-change data storage robust: insights from ab initio simulations , 2014, Scientific Reports.

[23]  J. Q. Broughton,et al.  Crystallization Rates of a Lennard-Jones Liquid , 1982 .

[24]  C. Angell,et al.  Formation of Glasses from Liquids and Biopolymers , 1995, Science.

[25]  Jiangwei Wang,et al.  Formation of monatomic metallic glasses through ultrafast liquid quenching , 2014, Nature.

[26]  P. Duwez,et al.  Non-crystalline Structure in Solidified Gold–Silicon Alloys , 1960, Nature.

[27]  W. Boettinger,et al.  On the transition from short-range diffusion-limited to collision-limited growth in alloy solidification , 1994 .

[28]  Kumar Virwani,et al.  Observation and modeling of polycrystalline grain formation in Ge2Sb2Te5 , 2012 .

[29]  W. Felsch Schichten aus amorphem Eisen , 1966 .

[30]  S. Ovshinsky Optical Cognitive Information Processing – A New Field , 2004 .

[31]  J. B. Hull,et al.  The formation, structure and crystallization of non-crystalline nickel produced by splat-quenching , 1976 .

[32]  C. Wright,et al.  Beyond von‐Neumann Computing with Nanoscale Phase‐Change Memory Devices , 2013 .

[33]  J. Hoyt,et al.  Molecular-dynamics study of solid–liquid interface migration in fcc metals , 2010 .

[34]  Franck Celestini,et al.  Measuring kinetic coefficients by molecular dynamics simulation of zone melting. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[35]  W. J. Wang,et al.  Breaking the Speed Limits of Phase-Change Memory , 2012, Science.

[36]  Hong‐Ming Lin,et al.  Amorphous solidification of pure metals in submicron spheres , 1989 .

[37]  D. Turnbull Under what conditions can a glass be formed , 1969 .

[38]  Juan J de Pablo,et al.  Ultrastable glasses from in silico vapour deposition. , 2013, Nature materials.