Ideal theory in $f$-algebras

[1]  M. Henriksen,et al.  Rings of continuous functions in which every finitely generated ideal is principal , 1956 .

[2]  G. Birkhoff,et al.  Lattice-ordered Rings , 1940 .

[3]  D. Rudd On two sum theorems for ideals of $C(X)$. , 1970 .

[4]  M. Henriksen,et al.  On the structure of a class of archimedean lattice-ordered algebras , 1961 .

[5]  R. D. Williams Intersections of Primary Ideals in Rings of Continuous Functions , 1972, Canadian Journal of Mathematics.

[6]  中野 秀五郎 Modern spectral theory , 1950 .

[7]  Klaus Keimel,et al.  Groupes et anneaux réticulés , 1977 .

[8]  C. B. Huijsmans Some analogies between commutative rings, Riesz spaces and distributive lattices with smallest element , 1974 .

[9]  A. C. M. van Rooij,et al.  Introduction to Riesz spaces , 1977 .

[10]  G. Seever Measures on F-spaces , 1968 .

[11]  J. Isbell,et al.  Residue class fields of lattice-ordered algebras , 1961 .

[12]  C. W. Kohls,et al.  Convex and pseudoprime ideals in rings of continuous functions , 1959 .

[13]  H. S. Ubramanian l -prime ideals in f -rings , 2018 .

[14]  A. Bigard Les orthomorphismes d'un espace réticulé archimédien , 1972 .

[15]  László Fuchs,et al.  Teilweise geordnete algebraische Strukturen , 1966 .

[16]  S. Bernau On semi-normal lattice rings , 1965, Mathematical Proceedings of the Cambridge Philosophical Society.

[17]  Leonard Gillman,et al.  Rings of continuous functions , 1961 .

[18]  A. Hager,et al.  Convex vector lattices and l-algebras☆ , 1981 .

[19]  D. Johnson A structure theory for a class of lattice-ordered rings , 1960 .

[20]  W. Luxemburg Some aspects of the theory of Riesz spaces , 1979 .

[21]  L. Gillman Rings with Hausdorff structure space , 1958 .