Efficient algorithm for steady-state stability analysis of large analog/RF circuits

This paper presents a method for the investigation of AC and large signal steady-state stability of electrical (analog/RF) circuits. In both cases stability/instability are detected through fast calculation and analysis of circuit poles. Thanks to iterative algorithms (Krylov-subspace methods) applied to modified nodal formulation of conversion matrices, a selection of poles is computed, allowing the method to be applied to large size circuits of any type of topology.

[1]  Stephen A. Maas,et al.  Nonlinear microwave circuits , 1988 .

[2]  S. Mons,et al.  A unified approach for the linear and nonlinear stability analysis of microwave circuits using commercially available tools , 1999, 1999 IEEE MTT-S International Microwave Symposium Digest (Cat. No.99CH36282).

[3]  V. Rizzoli,et al.  General Stability Analysis of Periodic Steady-State Regimes in Nonlinear Microwave Circuits , 1985 .

[4]  Paul J. Hurst,et al.  Pole and zero estimation in linear circuits , 1989 .

[5]  Ernest S. Kuh,et al.  Theory of Linear Active Networks , 1967 .

[6]  Y. Saad,et al.  Chebyshev acceleration techniques for solving nonsymmetric eigenvalue problems , 1984 .

[7]  Robert G. Meyer,et al.  Relationship between frequency response and settling time of operational amplifiers , 1974 .

[8]  G. Stewart,et al.  An Algorithm for Generalized Matrix Eigenvalue Problems. , 1973 .

[9]  A. Platzker,et al.  A rigorous yet simple method for determining stability of linear N-port networks [and MMIC application] , 1993, 15th Annual GaAs IC Symposium.

[10]  H. W. Bode,et al.  Network analysis and feedback amplifier design , 1945 .

[11]  G. Golub,et al.  Iterative solution of linear systems , 1991, Acta Numerica.

[12]  J. L. García,et al.  Nonlinear stability analysis of microwave circuits using commercial software , 1998 .

[13]  Mark M. Gourary,et al.  Computational method of stability investigation for large analog circuits , 2000, 2000 IEEE International Symposium on Circuits and Systems. Emerging Technologies for the 21st Century. Proceedings (IEEE Cat No.00CH36353).

[14]  I. Postlethwaite,et al.  The generalized Nyquist stability criterion and multivariable root loci , 1977 .

[15]  E. E. Dweck,et al.  Theory of Linear Active Networks , 1968 .

[16]  A. I. Mees,et al.  Dynamics of feedback systems , 1981 .

[17]  D. Sorensen Numerical methods for large eigenvalue problems , 2002, Acta Numerica.