Transient calorimetric diagnostics for plasma processing

[1]  M. Shiratani,et al.  Characterization of the energy flux toward the substrate during magnetron sputter deposition of ZnO thin films , 2013 .

[2]  S. Konstantinidis,et al.  Measuring the energy flux at the substrate position during magnetron sputter deposition processes , 2013 .

[3]  S. Ulrich,et al.  Energy fluxes in a radio-frequency magnetron discharge for the deposition of superhard cubic boron nitride coatings , 2012 .

[4]  C. Roth,et al.  Electron temperature, ion density and energy influx measurements in a tubular plasma reactor for powder surface modification , 2012 .

[5]  V. Zaporojtchenko,et al.  The method of conventional calorimetric probes — A short review and application for the characterization of nanocluster sources , 2011 .

[6]  M. Häckel,et al.  Aktive Thermosonde zur Messung des Energieeinstromes , 2011 .

[7]  S. Konstantinidis,et al.  Angular-resolved energy flux measurements of a dc- and HIPIMS-powered rotating cylindrical magnetron in reactive and non-reactive atmosphere , 2011 .

[8]  L. Qian,et al.  Surface property enhancement of Ni-free medical grade austenitic stainless steel by low-temperature plasma carburising , 2010 .

[9]  H. Kersten,et al.  Characterization of an atmospheric pressure plasma jet for surface modification and thin film deposition , 2010 .

[10]  R. Hippler,et al.  Time-resolved investigation of dual high power impulse magnetron sputtering with closed magnetic field during deposition of Ti–Cu thin films , 2010 .

[11]  T. Trottenberg,et al.  A calorimetric probe for plasma diagnostics. , 2010, The Review of scientific instruments.

[12]  U. Helmersson,et al.  Energy flux measurements in high power impulse magnetron sputtering , 2009 .

[13]  H. Kersten,et al.  Angularly and Spatially Resolved Measurements of the Energy Flux in an RF Plasma Using a Thermal Probe , 2009 .

[14]  Š. Kment,et al.  Comparative Study of Total Power Density at a Substrate in Pulsed DC Magnetron and Hollow‐Cathode Plasma Jet Sputtering Systems , 2009 .

[15]  C. Roth,et al.  Thermal Characterization and Optimization of a Plasma Downstream Reactor for Particle Surface Modification , 2009 .

[16]  U. Czarnetzki,et al.  The electrical asymmetry effect in capacitively coupled radio frequency discharges – measurements of dc self bias, ion energy and ion flux , 2009 .

[17]  H. Kersten,et al.  Spatially resolved thermal probe measurement for the investigation of the energy influx in an rf-plasma , 2008 .

[18]  P. Lefaucheux,et al.  Direct measurements of the energy flux due to chemical reactions at the surface of a silicon sample interacting with a SF6 plasma , 2008, 0811.0598.

[19]  R. Basner,et al.  Measuring the temperature of microparticles in plasmas. , 2008, The Review of scientific instruments.

[20]  A. Fruchtman,et al.  Heat flux measurements and plasma composition , 2006 .

[21]  G. Morfill,et al.  Grain surface temperature in noble gas discharges: Refined analytical model , 2006 .

[22]  E. Wallin,et al.  Energy distributions of positive and negative ions during magnetron sputtering of an Al target in Ar∕O2 mixtures , 2006 .

[23]  H. Kersten,et al.  Power outflux from the plasma: an important parameter in surface processing , 2004 .

[24]  S. Dew,et al.  Measurement of energy flux at the substrate in a magnetron sputter system using an integrated sensor , 2004 .

[25]  E. Stamate,et al.  Principle and application of a thermal probe to reactive plasmas , 2002 .

[26]  T. Drüsedau,et al.  Substrate heating by sputter-deposition of AlN: the effects of dc and rf discharges in nitrogen atmosphere , 2002 .

[27]  R. Hippler,et al.  On the determination of energy fluxes at plasma–surface processes , 2001 .

[28]  R. Hippler,et al.  Investigations on the energy influx at plasma processes by means of a simple thermal probe , 2000 .

[29]  M. Otte,et al.  Energy influx from an rf plasma to a substrate during plasma processing , 2000 .

[30]  W. Eckstein,et al.  Energy transfer into the growing film during sputter deposition: An investigation by calorimetric measurements and Monte Carlo simulations , 1999 .

[31]  R. Hippler,et al.  On the energy influx to the substrate during sputter deposition of thin aluminium films , 1998 .

[32]  V. Godyak,et al.  Surface temperature and thermal balance of probes immersed in high density plasma , 1998 .

[33]  D. Vender,et al.  On the ion energy transfer to the substrate during titanium deposition in a hollow cathode arc discharge , 1995 .

[34]  J. Thornton Substrate heating in cylindrical magnetron sputtering sources , 1978 .

[35]  John A. Thornton,et al.  Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings , 1974 .

[36]  D. G. Williams,et al.  Characterization of silver coatings deposited from a hollow cathode source , 1974 .

[37]  G. J. Kominiak,et al.  Effect of ion bombardment during deposition on thick metal and ceramic deposits , 1974 .

[38]  D. J. Ball Plasma Diagnostics and Energy Transport of a dc Discharge Used for Sputtering , 1972 .

[39]  Ruedi Graf Rudolf von Rohr , 2011 .

[40]  Karl H. Schoenbach,et al.  Low temperature plasmas : fundamentals, technologies and techniques , 2008 .

[41]  J. Machet,et al.  Influence of particle energies on the properties of magnetron sputtered tungsten films , 1998 .

[42]  G. Kroesen,et al.  The Thermal Balance of Substrates During Plasma Processing , 1990 .