Hierarchical multiscale modeling of Polyvinyl Alcohol/Montmorillonite nanocomposites

Abstract The mechanical responses of low volume fraction Polyvinyl Alcohol (PVA)/Montmorillonite (MMT) nanocomposites were modeled using a hierarchical multiscale modeling method. Nanoscale Molecular Dynamics (MD) and mesoscale Finite Element Analysis (FEA) were used to bridge information regarding deformation mechanics within Polymer/Clay Nanocomposites (PCNs). MD computations of PVA/MMT interfaces were employed to calibrate a Traction-Separation (T-S) relation, which was then upscaled into a cohesive zone model (CZM) to model interfaces between PVA and MMT in a mesomechanical finite element framework. Virtual Composite Structure Generation (VCSG) was used to generate a quasi-realistic Representative Volume Element (RVE), and explicit FEA was performed on the RVE to demonstrate delamination in the PCNs. The FEA featured an elasto-viscoelastic-viscoplastic Internal State Variable (ISV) model for the polymer host (PVA) and a CZM for the interfaces between MMT and PVA. The hierarchical length scale bridging methodology employed here for a polymer based composite has applications for many other material systems.

[1]  Ho-Cheol Kim,et al.  On exfoliation of montmorillonite in epoxy , 2001 .

[2]  M. Ortiz,et al.  Computational modelling of impact damage in brittle materials , 1996 .

[3]  D. S. Dugdale Yielding of steel sheets containing slits , 1960 .

[4]  M. Boyce,et al.  Multiscale micromechanical modeling of polymer/clay nanocomposites and the effective clay particle , 2004 .

[5]  M. Crisfield,et al.  Finite element interface models for the delamination analysis of laminated composites: mechanical and computational issues , 2001 .

[6]  H. Ploehn,et al.  Quantitative Analysis of Montmorillonite Platelet Size by Atomic Force Microscopy , 2006 .

[7]  Edward H. Glaessgen,et al.  Multiscale modeling of intergranular fracture in aluminum: constitutive relation for interface debonding , 2008, Journal of Materials Science.

[8]  B. W. Cherry,et al.  The role of recovery forces in the deformation of linear polyethylene , 1978 .

[9]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[10]  A. A. Sapalidis,et al.  PVA / Montmorillonite Nanocomposites: Development and Properties , 2011 .

[11]  J. Sweeney,et al.  Modelling of polymer clay nanocomposites for a multiscale approach. , 2008 .

[12]  Nikolaos A. Peppas,et al.  Mechanisms of solute and drug transport in relaxing, swellable, hydrophilic glassy polymers , 1999 .

[13]  M. Horstemeyer,et al.  Formulation of a damage internal state variable model for amorphous glassy polymers , 2014 .

[14]  Donald F. Adams,et al.  Inelastic Analysis of a Unidirectional Composite Subjected to Transverse Normal Loading , 1970 .

[15]  V. Tan,et al.  Multiscale modeling of damage progression in nylon 6/clay nanocomposites , 2014 .

[16]  G. Paulino,et al.  Cohesive Zone Models: A Critical Review of Traction-Separation Relationships Across Fracture Surfaces , 2011 .

[17]  Mark F. Horstemeyer,et al.  Molecular dynamics simulations of deformation mechanisms of amorphous polyethylene , 2010 .

[18]  G. I. Barenblatt THE MATHEMATICAL THEORY OF EQUILIBRIUM CRACKS IN BRITTLE FRACTURE , 1962 .

[19]  C. Bauwens-Crowet,et al.  The compression yield behaviour of polymethyl methacrylate over a wide range of temperatures and strain-rates , 1973 .

[20]  Gregory M. Odegard,et al.  MODELING TECHNIQUES FOR DETERMINATION OF MECHANICAL PROPERTIES OF POLYMER NANOCOMPOSITES , 2005 .

[21]  V. Yamakov,et al.  Multiscale Modeling of Grain-Boundary Fracture: Cohesive Zone Models Parameterized from Atomistic Simulations , 2006 .

[22]  J. Kressler,et al.  Influence of nanofillers on the deformation process in layered silicate/polyamide-12 nanocomposites , 2001 .

[23]  J. Hutchinson,et al.  The relation between crack growth resistance and fracture process parameters in elastic-plastic solids , 1992 .

[24]  Lallit Anand,et al.  A thermo-mechanically coupled theory for large deformations of amorphous polymers. Part II: Applications , 2011 .

[25]  K. Vecchio,et al.  A unified model for stiffness modulus of amorphous polymers across transition temperatures and strain rates , 2005 .

[26]  G. Brennan,et al.  Polyamide-12 layered silicate nanocomposites by melt blending , 2003 .

[27]  J. Cuppoletti Nanocomposites and Polymers with Analytical Methods , 2011 .

[28]  P. Dubois,et al.  Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials , 2000 .

[29]  H. D. Hibbitt,et al.  ABAQUS/EPGEN–A GENERAL PURPOSE FINITE ELEMENT CODE WITH EMPHASIS ON NONLINEAR APPLICATIONS , 1984 .

[30]  P. Dawson,et al.  An analysis of texture and plastic spin for planar polycrystals , 1993 .

[31]  Ardeshir H. Tehrani,et al.  Mesomechanical Modeling of Polymer/Clay Nanocomposites Using a Viscoelastic-Viscoplastic-Viscodamage Constitutive Model , 2011 .

[32]  Edward H. Glaessgen,et al.  Molecular-dynamics simulation-based cohesive zone representation of intergranular fracture processes in aluminum , 2006 .

[33]  R. S. Sidhu,et al.  Three-dimensional visualization and microstructure-based modeling of deformation in particle-reinforced composites , 2006 .

[34]  Constantine D. Papaspyrides,et al.  A review on polymer–layered silicate nanocomposites , 2008 .

[35]  M. Miyamoto,et al.  Fracture behavior of core‐shell rubber–modified clay‐epoxy nanocomposites , 2003 .

[36]  Xiaopeng Xu,et al.  Void nucleation by inclusion debonding in a crystal matrix , 1993 .

[37]  A. Needleman An analysis of tensile decohesion along an interface , 1990 .

[38]  D. Elder,et al.  Polyvinyl Alcohol-Clay Complexes Formed by Direct Synthesis , 1996 .

[39]  K. H. Lee,et al.  Mesh design in finite element analysis of post-buckled delamination in composite laminates , 1999 .

[40]  M. Oka,et al.  Preliminary study of polyvinyl alcohol-hydrogel (PVA-H) artificial meniscus. , 2003, Biomaterials.

[41]  H. Espinosa,et al.  A grain level model for the study of failure initiation and evolution in polycrystalline brittle materials. Part I: Theory and numerical implementation , 2003 .

[42]  Leon Mishnaevsky,et al.  Nanoreinforced polymer composites: 3D FEM modeling with effective interface concept , 2011 .

[43]  R. Jones,et al.  Molecular-dynamics-based cohesive zone law for brittle interfacial fracture under mixed loading conditions: Effects of elastic constant mismatch , 2009 .

[44]  Yung C. Shin,et al.  Molecular dynamics based cohesive zone law for describing Al–SiC interface mechanics , 2011 .

[45]  M. Bousmina,et al.  Morphology and properties of organoclay modified polycarbonate/poly(methyl methacrylate) blend , 2006 .

[46]  A. Needleman A Continuum Model for Void Nucleation by Inclusion Debonding , 1987 .

[47]  A. Needleman An analysis of decohesion along an imperfect interface , 1990 .

[48]  M. Boyce,et al.  Large inelastic deformation of glassy polymers. part I: rate dependent constitutive model , 1988 .

[49]  Said Ahzi,et al.  Modeling and validation of the large deformation inelastic response of amorphous polymers over a wide range of temperatures and strain rates , 2007 .

[50]  K. Strawhecker,et al.  Structure and Properties of Poly(vinyl alcohol)/Na+ Montmorillonite Nanocomposites , 2000 .

[51]  J. Rice Inelastic constitutive relations for solids: An internal-variable theory and its application to metal plasticity , 1971 .

[52]  Mohammed Cherkaoui,et al.  An improved atomistic simulation based mixed-mode cohesive zone law considering non-planar crack growth , 2013 .

[53]  D. Lyon,et al.  Vinyl Alcohol: a Stable Gas Phase Species? , 1967, Nature.

[54]  Vincent Hayward,et al.  Efficient Collision Prediction Among Many Moving Objects , 1995, Int. J. Robotics Res..

[55]  Hurang Hu,et al.  Characterizing and Modeling Mechanical Properties of Nanocomposites-Review and Evaluation , 2010 .

[56]  J. Chaboche,et al.  A cohesive zone model for fatigue and creep–fatigue crack growth in single crystal superalloys , 2009 .

[57]  M. Ortiz,et al.  Effect of interfacial compliance on bifurcation of a layer bonded to a substrate , 1997 .

[58]  Mark F. Horstemeyer,et al.  An internal state variable material model for predicting the time, thermomechanical, and stress state dependence of amorphous glassy polymers under large deformation , 2013 .

[59]  Mark F. Horstemeyer,et al.  Atomistic simulations on the tensile debonding of an aluminum-silicon interface , 2000 .

[60]  G. Vigier,et al.  Clay-reinforced polyamide : Preferential orientation of the montmorillonite sheets and the polyamide crystalline lamellae , 2001 .

[61]  Viggo Tvergaard,et al.  On the toughness of ductile adhesive joints , 1996 .

[62]  M. Gurtin,et al.  Thermodynamics with Internal State Variables , 1967 .

[63]  Lallit Anand,et al.  On modeling the micro-indentation response of an amorphous polymer , 2006 .

[64]  Vesselin Stoilov,et al.  A Multiscale Model of First and Second Order Phase Transformations with Application to SMA Single Crystals , 2008, Multiscale Model. Simul..

[65]  A. Yee,et al.  Epoxy Nanocomposites with Highly Exfoliated Clay: Mechanical Properties and Fracture Mechanisms , 2005 .

[66]  V. Tan,et al.  Effects of clay structural parameters and gallery strength on the damage behavior of epoxy/clay nanocomposites , 2013 .

[67]  H. Koerner,et al.  Force Field for Mica-Type Silicates and Dynamics of Octadecylammonium Chains Grafted to Montmorillonite , 2005 .

[68]  T. Lin,et al.  Elastic-Plastic Analysis of Unidirectional Composites , 1972 .

[69]  C. Passerello Interference detection using barycentric coordinates , 1982 .

[70]  P. Allison,et al.  Mechanical, thermal, and microstructural analysis of polyvinyl alcohol/montmorillonite nanocomposites , 2015 .

[71]  Jonathan A. Zimmerman,et al.  Molecular dynamics simulation based cohesive surface representation of mixed mode fracture , 2008 .