Efficient and robust model fitting with unknown noise scale

This paper addresses the general problem of robust parametric model estimation from data that has both an unknown (and possibly majority) fraction of outliers as well as an unknown scale of measurement noise. We focus on computer vision applications from image correspondences, such as camera resectioning, estimation of the fundamental matrix or relative pose for 3D reconstruction, and estimation of 2D homographies for image registration and motion segmentation, although there are many other applications. In practice, these methods typically rely on a predefined inlier thresholds because automatic scale detection is usually too unreliable or too slow. We propose a new method for robust estimation with automatic scale detection that is faster, more precise and more robust than previous alternatives, and show that it can be practically applied to these problems.

[1]  O. Chum,et al.  2 Randomized RANSAC , 2002 .

[2]  Philip H. S. Torr,et al.  The Development and Comparison of Robust Methods for Estimating the Fundamental Matrix , 1997, International Journal of Computer Vision.

[3]  Jiri Matas,et al.  Matching with PROSAC - progressive sample consensus , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[4]  Erkki Oja,et al.  A new curve detection method: Randomized Hough transform (RHT) , 1990, Pattern Recognit. Lett..

[5]  Gerard Medioni,et al.  StaRSaC: Stable random sample consensus for parameter estimation , 2009, CVPR.

[6]  P. J. Huber The 1972 Wald Lecture Robust Statistics: A Review , 1972 .

[7]  Kenichi Kanatani,et al.  Image mosaicing by stratified matching , 2004, Image Vis. Comput..

[8]  J. Branham,et al.  Alternatives to least squares , 1982 .

[9]  Steven M. Seitz,et al.  Photo tourism: exploring photo collections in 3D , 2006, ACM Trans. Graph..

[10]  Rae-Hong Park,et al.  Robust Adaptive Segmentation of Range Images , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Jiri Matas,et al.  Randomized RANSAC with Td, d test , 2004, Image Vis. Comput..

[12]  Tat-Jun Chin,et al.  Robust fitting of multiple structures: The statistical learning approach , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[13]  Jiri Matas,et al.  Optimal Randomized RANSAC , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  Jiri Matas,et al.  Locally Optimized RANSAC , 2003, DAGM-Symposium.

[15]  Andrew Zisserman,et al.  MLESAC: A New Robust Estimator with Application to Estimating Image Geometry , 2000, Comput. Vis. Image Underst..

[16]  Bernhard P. Wrobel,et al.  Multiple View Geometry in Computer Vision , 2001 .

[17]  Tat-Jun Chin,et al.  Simultaneously Fitting and Segmenting Multiple-Structure Data with Outliers , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  Peter J. Rousseeuw,et al.  Robust Regression and Outlier Detection , 2005, Wiley Series in Probability and Statistics.

[19]  Andrea Fusiello,et al.  Automatic Estimation of the Inlier Threshold in Robust Multiple Structures Fitting , 2009, ICIAP.

[20]  David Nistér,et al.  Preemptive RANSAC for live structure and motion estimation , 2005, Machine Vision and Applications.

[21]  David Suter,et al.  Robust adaptive-scale parametric model estimation for computer vision , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  Jan-Michael Frahm,et al.  A Comparative Analysis of RANSAC Techniques Leading to Adaptive Real-Time Random Sample Consensus , 2008, ECCV.

[23]  Peter Meer,et al.  Heteroscedastic Projection Based M-Estimators , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) - Workshops.

[24]  Jan-Michael Frahm,et al.  RECON: Scale-adaptive robust estimation via Residual Consensus , 2011, 2011 International Conference on Computer Vision.

[25]  Jiri Matas,et al.  Two-view geometry estimation unaffected by a dominant plane , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[26]  Peter Meer,et al.  Beyond RANSAC: User Independent Robust Regression , 2006, 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06).

[27]  Ilan Shimshoni,et al.  The modified pbM-estimator method and a runtime analysis technique for the RANSAC family , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[28]  Haifeng Chen,et al.  Robust regression with projection based M-estimators , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[29]  B. Ripley,et al.  Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.

[30]  David Suter,et al.  Robust segmentation of visual data using ranked unbiased scale estimate , 1999, Robotica.

[31]  P. Rousseeuw Least Median of Squares Regression , 1984 .

[32]  Richard Szeliski,et al.  Modeling the World from Internet Photo Collections , 2008, International Journal of Computer Vision.

[33]  Richard O. Duda,et al.  Use of the Hough transformation to detect lines and curves in pictures , 1972, CACM.

[34]  Adam Krzyzak,et al.  Robust Estimation for Range Image Segmentation and Reconstruction , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[35]  D. Dyer Estimation of the Scale Parameter of the Chi Distribution Based on Sample Quantiles , 1973 .

[36]  Lixin Fan,et al.  Robust Scale Estimation from Ensemble Inlier Sets for Random Sample Consensus Methods , 2008, ECCV.

[37]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[38]  金谷 健一 Statistical optimization for geometric computation : theory and practice , 2005 .

[39]  David Suter,et al.  MDPE: A Very Robust Estimator for Model Fitting and Range Image Segmentation , 2004, International Journal of Computer Vision.

[40]  S. Garn,et al.  Statistics Review , 2009, Research Methods.

[41]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[42]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[43]  David P. Capel An Effective Bail-out Test for RANSAC Consensus Scoring , 2005, BMVC.

[44]  Daniel Mirota,et al.  A Generalized Kernel Consensus-Based Robust Estimator , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[45]  J. L. Nolan Stable Distributions. Models for Heavy Tailed Data , 2001 .

[46]  C. D. Kemp,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[47]  Jan-Michael Frahm,et al.  RANSAC for (Quasi-)Degenerate data (QDEGSAC) , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).