Trihapto‐Koordination eines Borirens an ein einzelnes Metallatom: ein heterocyclisches Analogon des η3‐Cyclopropenylliganden

Ein erstes Beispiel fur einen einkernigen Komplex mit einem η3-koordinierten Borirenliganden wurde durch photolytischen Transfer eines Arylborylens auf Diphenylacetylen und Abspaltung von drei CO-Gruppen aus dem Edukt erhalten. Der η3-Borirenkomplex enthalt ein Chrom(0)-Zentrum, das zusatzlich η6-artig an eine Phenylgruppe koordiniert. Der Komplex wird mit 15 % Ausbeute isoliert, und auserdem fallt das Metall-freie Boriren in 62 % Ausbeute an. Die Bindung des Chromzentrums an den Borirenring wurde mit DFT-Methoden untersucht.

[1]  Rian D. Dewhurst,et al.  Reductive borylene-CO coupling with a bulky arylborylene complex. , 2013, Angewandte Chemie.

[2]  Krzysztof Radacki,et al.  Reduktive Borylen‐CO‐Kupplung an einem sterisch anspruchsvollen Arylborylenkomplex , 2013 .

[3]  Z. Jamshidi,et al.  Do coinage metal anions interact with substituted benzene derivatives? , 2013, Journal of Molecular Modeling.

[4]  Rian D. Dewhurst,et al.  Electronic and structural effects of stepwise borylation and quaternization on borirene aromaticity. , 2013, Journal of the American Chemical Society.

[5]  Jie Liu,et al.  Ir-catalyzed direct borylation at the 4-position of pyrene. , 2012, The Journal of organic chemistry.

[6]  Rian D. Dewhurst,et al.  Unsupported boron–carbon σ-coordination to platinum as an isolable snapshot of σ-bond activation , 2012, Nature Communications.

[7]  Andreas Steffen,et al.  Experimental and theoretical studies of the photophysical properties of 2- and 2,7-functionalized pyrene derivatives. , 2011, Journal of the American Chemical Society.

[8]  Jiali Gao,et al.  Energy decomposition analysis based on a block-localized wavefunction and multistate density functional theory. , 2011, Physical chemistry chemical physics : PCCP.

[9]  C. Wade,et al.  Fluoride ion complexation and sensing using organoboron compounds. , 2010, Chemical reviews.

[10]  H. Braunschweig,et al.  Borylene-based functionalization of Pt-alkynyl complexes by photochemical borylene transfer from [(OC)(5)Cr=BN(SiMe(3))(2)]. , 2009, Chemical communications.

[11]  T. Kupfer,et al.  Borylene-based direct functionalization of organic substrates: synthesis, characterization, and photophysical properties of novel pi-conjugated borirenes. , 2009, Journal of the American Chemical Society.

[12]  F. Gabbaï,et al.  Cationic boranes for the complexation of fluoride ions in water below the 4 ppm maximum contaminant level. , 2009, Journal of the American Chemical Society.

[13]  G. Bazan,et al.  A new design strategy for organic optoelectronic materials by lateral boryl substitution. , 2008, Angewandte Chemie.

[14]  G. Bazan,et al.  Design organischer optoelektronischer Materialien durch laterale Borylsubstitution , 2008 .

[15]  Krzysztof Radacki,et al.  Synthese und Elektronenstruktur eines Ferroborirens , 2007 .

[16]  G. Frenking,et al.  Synthesis and electronic structure of a ferroborirene. , 2007, Angewandte Chemie.

[17]  H. Braunschweig,et al.  Synthese von Borirenen durch photochemischen Borylentransfer von [(OC)5MBN(SiMe3)2] (M=Cr, Mo) auf Alkine , 2005 .

[18]  T. Herbst,et al.  Synthesis of borirenes by photochemical borylene transfer from [(OC)5M==BN(SiMe3)2] (M=Cr, Mo) to alkynes. , 2005, Angewandte Chemie.

[19]  T. B. Marder,et al.  Applications of Three-Coordinate Organoboron Compounds and Polymers in Optoelectronics , 2004 .

[20]  F. Jäkle Lewis acidic organoboron polymers , 2003 .

[21]  T. Kitagawa,et al.  Cyclopropenylium cations, cyclopropenones, and heteroanalogues-recent advances. , 2003, Chemical reviews.

[22]  Christopher D. Entwistle,et al.  Boron chemistry lights the way: optical properties of molecular and polymeric systems. , 2002, Angewandte Chemie.

[23]  Todd B. Marder,et al.  Die Borchemie leuchtet: optische Eigenschaften von Molekülen und Polymeren C.D.E. dankt EPSRC und Syngenta für Postgraduiertenstipendien und T.B.M. der University of Durham für Unterstützung sowie Prof. Dr. K. Tamao für einen Vorabdruck von Lit. 32. , 2002 .

[24]  N. Matsumi,et al.  Extension of π-Conjugation Length via the Vacant p-Orbital of the Boron Atom. Synthesis of Novel Electron Deficient π-Conjugated Systems by Hydroboration Polymerization and Their Blue Light Emission , 1998 .

[25]  D. A. Dougherty,et al.  The Cationminus signpi Interaction. , 1997, Chemical reviews.

[26]  A. Rheingold,et al.  Preparation and dynamic behavior of .eta.3-cyclopropenyl complexes of cobalt, rhodium, and iridium. Crystal and molecular structure of [Ir(.eta.3-C3tBu3)(CO)3] , 1993 .

[27]  A. Rheingold,et al.  Bora-aromatic systems. Part 10. Aromatic stabilization of the triarylborirene ring system by tricoordinate boron and facile ring-opening with tetracoordinate boron , 1990 .

[28]  A. Rheingold,et al.  Oxidative addition of cyclopropenyl cations to zerovalent molybdenum and tungsten centers. Synthesis of .eta.3-cyclopropenyl and .eta.3-oxocyclobutenyl complexes of molybdenum(II) and tungsten(II). Crystal and molecular structures of [Mo(.eta.5-C5H5)(.eta.3-C3Ph2R)(CO)2] (R = Ph, tert-Bu) , 1985 .

[29]  J. Fettinger,et al.  Transformation of a tungstenacyclobutadiene complex into a nonfluxional .eta.3-cyclopropenyl complex by addition of a donor ligand. The x-ray structure of the tungstenacyclobutadiene-.eta.3-cyclopropenyl complex W(.eta.5-C5H5)[C3(CMe3)2Me](PMe3)Cl2 , 1984 .

[30]  R. Breslow SYNTHESIS OF THE s-TRIPHENYLCYCLOPROPENYL CATION , 1957 .