Cutter partition-based tool orientation optimization for gouge avoidance in five-axis machining

This paper presents a cutter partition-based tool orientation optimization algorithm that can identify and eliminate both local and rear gouging in five-axis machining. This algorithm is developed to generate smooth gouge-free tool paths for arbitrary free-form surfaces machined by general Automatically Programmed Tools (APT) cutters. The algorithm involves an iterative process of cutter projection to compute the gouge-free cutter positions. During each iteration, the cutter partition method is used to classify the cutting portion of the cutter, which in turn determines the gouging condition. Based on the classification, the algorithm applies an optimal gouge-avoidance strategy to minimize the size of tool orientation and position changes. The proposed algorithm can handle the combination of local and rear gouging (either separately or simultaneously), guarantee front edge cutting (avoiding damage to the cutter and surface), ensure a safety clearance between the rear edge of the cutter and the machined surface, and achieve minimal interruption to tool orientation and position from gouge avoidance. Simulation and cutting experiments confirm the effectiveness of the proposed algorithm.

[1]  Yuan-Shin Lee,et al.  Admissible tool orientation control of gouging avoidance for 5-axis complex surface machining , 1997, Comput. Aided Des..

[2]  Farhad Arbab,et al.  Fixed-axis tool positioning with built-in global interference checking for NC path generation , 1988, IEEE J. Robotics Autom..

[3]  Y. Chen,et al.  A three-dimensional configuration-space method for 5-axis tessellated surface machining , 2008, Int. J. Comput. Integr. Manuf..

[4]  Q. J. Ge,et al.  Interference-free tool path generation for 5-axis sculptured surface machining using rational Bézier motions of a flat-end cutter , 2005 .

[5]  Erik L. J. Bohez,et al.  A new global accessibility algorithm for a polyhedral model with convex polygonal facets , 2009, Comput. Aided Des..

[6]  Yuan-Shin Lee,et al.  Optimizing tool orientations for 5-axis machining by configuration-space search method , 2003, Comput. Aided Des..

[7]  Peiqing Ye,et al.  Local interference detection and avoidance in five-axis NC machining of sculptured surfaces , 2005 .

[8]  Nan Wang,et al.  Automatic generation of gouge-free and angular-velocity-compliant five-axis toolpath , 2007, Comput. Aided Des..

[9]  Yoshimi Takeuchi,et al.  Collision-free tool path generation using 2-dimensional C-space for 5-axis control machining , 1997 .

[10]  Dong-Soo Kim,et al.  A new curve-based approach to polyhedral machining , 2002, Comput. Aided Des..

[11]  Shen Hongyao,et al.  Approximate tool posture collision-free area generation for five-axis CNC finishing process using admissible area interpolation , 2012 .

[12]  Han Ding,et al.  Global optimization of tool path for five-axis flank milling with a cylindrical cutter , 2009, Comput. Aided Des..

[13]  Radha Sarma,et al.  On local gouging in five-axis sculptured surface machining using flat-end tools , 2000, Comput. Aided Des..

[14]  Bert Lauwers,et al.  Optimal and collision free tool posture in five-axis machining through the tight integration of tool path generation and machine simulation , 2003, Comput. Aided Des..

[15]  Robert B. Jerard,et al.  5-axis Machining of Sculptured Surfaces with a Flat-end Cutter , 1994, Comput. Aided Des..

[16]  Takafumi Saito,et al.  NC machining with G-buffer method , 1991, SIGGRAPH.

[17]  Gershon Elber,et al.  Precise Global Collision Detection in Multi-Axis NC-Machining , 2004 .

[18]  Gershon Elber,et al.  Continuous path verification in multi-axis NC-machining , 2004, SCG '04.

[19]  Carme Torras,et al.  3D collision detection: a survey , 2001, Comput. Graph..

[20]  Min-Yang Yang,et al.  Mesh-based tool path generation for constant scallop-height machining , 2008 .

[21]  Li-Yong Shen,et al.  Tool orientation optimization for 5-axis machining with C-space method , 2017 .

[22]  Paul J. Gray,et al.  Graphics-assisted Rolling Ball Method for 5-axis surface machining , 2004, Comput. Aided Des..

[23]  Yoshitaka Adachi,et al.  Real-time interference analysis between a tool and an environment , 2001, Comput. Aided Des..

[24]  Sanjay E. Sarma,et al.  Generating 5-axis NC roughing paths directly from a tessellated representation , 2000, Comput. Aided Des..

[25]  Pisut Koomsap,et al.  The sweep plane algorithm for global collision detection with workpiece geometry update for five-axis NC machining , 2007, Comput. Aided Des..

[26]  Yuan-Shin Lee,et al.  2-Phase approach to global tool interference avoidance in 5-axis machining , 1995, Comput. Aided Des..

[27]  J. W. Park,et al.  Cutter-location data optimization in 5-axis surface machining , 1993, Comput. Aided Des..

[28]  Robert B. Jerard,et al.  C-space approach to tool-path generation for die and mould machining , 1997, Comput. Aided Des..

[29]  Jing-Rong Li,et al.  Graphics-assisted approach to rapid collision detection for multi-axis machining , 2006 .

[30]  F. Monies,et al.  Determining a collision-free domain for the tool in five-axis machining , 2004 .

[31]  Paul J. Gray,et al.  Rolling ball method for 5-axis surface machining , 2003, Comput. Aided Des..

[32]  Peihua Gu,et al.  Recent development in CNC machining of freeform surfaces: A state-of-the-art review , 2010, Comput. Aided Des..

[33]  Han Ding,et al.  A GPU-based algorithm for generating collision-free and orientation-smooth five-axis finishing tool paths of a ball-end cutter , 2010 .

[34]  Gandjar Kiswanto,et al.  Gouging elimination through tool lifting in tool path generation for five-axis milling based on faceted models , 2007 .

[35]  Jing-Rong Li,et al.  Graphics-assisted cutter orientation correction for collision-free five-axis machining , 2007 .

[36]  W. Edward Red,et al.  Tool selection for five-axis curvature matched machining , 2002, Comput. Aided Des..

[37]  Abbas Vafaeesefat,et al.  Penetration–elimination method for five-axis CNC machining of sculptured surfaces , 2007 .

[38]  Hsi-Yung Feng,et al.  Efficient five-axis machining of free-form surfaces with constant scallop height tool paths , 2004 .

[39]  F. Schoening,et al.  The crystal structure of zinc acetate dihydrate, Zn(CH3COO)2.2H2O , 1953 .

[40]  Jean-Pierre Kruth,et al.  Nc-Postprocessing And Nc-Simulation For Five-Axis Milling Operations With Automatic Collision Avoidance , 1999 .

[41]  Paul J. Gray,et al.  Arc-intersect method for 5-axis tool positioning , 2005, Comput. Aided Des..

[42]  Chih-Hsing Chu,et al.  Tool-path verification in five-axis machining of sculptured surfaces , 1997 .

[43]  Tran Duc Tang Algorithms for collision detection and avoidance for five-axis NC machining: A state of the art review , 2014, Comput. Aided Des..