Topology correction of segmented medical images using a fast marching algorithm

We present here a new method for correcting the topology of objects segmented from medical images. Whereas previous techniques alter a surface obtained from a binary segmentation of the object, our technique can be applied directly to the image intensities of a probabilistic or fuzzy segmentation, thereby propagating the topology for all isosurfaces of the object. From an analysis of topological changes and critical points in implicit surfaces, we derive a topology propagation algorithm that enforces any desired topology using a fast marching technique. The method has been applied successfully to the correction of the cortical gray matter/white matter interface in segmented brain images and is publicly released as a software plug-in for the MIPAV package.

[1]  Gilles Bertrand,et al.  Topological operators for grayscale image processing , 2001, J. Electronic Imaging.

[2]  Richard M. Leahy,et al.  Automated graph-based analysis and correction of cortical volume topology , 2001, IEEE Transactions on Medical Imaging.

[3]  Pierre-Louis Bazin,et al.  Topology Correction Using Fast Marching Methods and Its Application to Brain Segmentation , 2005, MICCAI.

[4]  Michael Henle,et al.  A combinatorial introduction to topology , 1978 .

[5]  Matthew J. McAuliffe,et al.  Medical Image Processing, Analysis and Visualization in clinical research , 2001, Proceedings 14th IEEE Symposium on Computer-Based Medical Systems. CBMS 2001.

[6]  Jerry L. Prince,et al.  Cortical reconstruction using implicit surface evolution: Accuracy and precision analysis , 2006, NeuroImage.

[7]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods , 1999 .

[8]  Pierre-Louis Bazin,et al.  Topology-Preserving Tissue Classification of Magnetic Resonance Brain Images , 2007, IEEE Transactions on Medical Imaging.

[9]  Nicholas Ayache,et al.  Topological segmentation of discrete surfaces , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[10]  Anders M. Dale,et al.  Automated manifold surgery: constructing geometrically accurate and topologically correct models of the human cerebral cortex , 2001, IEEE Transactions on Medical Imaging.

[11]  Isabelle Bloch,et al.  From 3D magnetic resonance images to structural representations of the cortex topography using topology preserving deformations , 1995, Journal of Mathematical Imaging and Vision.

[12]  Rainer Goebel,et al.  An Efficient Algorithm for Topologically Correct Segmentation of the Cortical Sheet in Anatomical MR Volumes , 2001, NeuroImage.

[13]  Koenraad Van Leemput,et al.  Automated model-based tissue classification of MR images of the brain , 1999, IEEE Transactions on Medical Imaging.

[14]  Pierre-Louis Bazin,et al.  Topology Preserving Tissue Classification with Fast Marching and Topology Templates , 2005, IPMI.

[15]  Julien Lamy,et al.  Integrating digital topology in image-processing libraries , 2007, Comput. Methods Programs Biomed..

[16]  Jerry L. Prince,et al.  Topology correction in brain cortex segmentation using a multiscale, graph-based algorithm , 2002, IEEE Transactions on Medical Imaging.

[17]  Xiao Han,et al.  CRUISE: Cortical reconstruction using implicit surface evolution , 2004, NeuroImage.

[18]  Xiao Han,et al.  A Topology Preserving Level Set Method for Geometric Deformable Models , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  J. Maunsell,et al.  Two‐dimensional maps of the cerebral cortex , 1980, The Journal of comparative neurology.

[20]  John Hart Morse Theory for Implicit Surface Modeling , 1997, VisMath.

[21]  Ronald Fedkiw,et al.  Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.

[22]  Gilles Bertrand,et al.  Simple points, topological numbers and geodesic neighborhoods in cubic grids , 1994, Pattern Recognit. Lett..

[23]  Bruce Fischl,et al.  Geometrically Accurate Topology-Correction of Cortical Surfaces Using Nonseparating Loops , 2007, IEEE Transactions on Medical Imaging.

[24]  Leif Kobbelt,et al.  Sub‐Voxel Topology Control for Level‐Set Surfaces , 2003, Comput. Graph. Forum.

[25]  S. Resnick,et al.  One-year age changes in MRI brain volumes in older adults. , 2000, Cerebral cortex.

[26]  Dzung L. Pham,et al.  Spatial Models for Fuzzy Clustering , 2001, Comput. Vis. Image Underst..

[27]  Pierre-Louis Bazin,et al.  Digital Homeomorphisms in Deformable Registration , 2007, IPMI.

[28]  W. Eric L. Grimson,et al.  Topological Correction of Subcortical Segmentation , 2003, MICCAI.

[29]  Mathieu Desbrun,et al.  Removing excess topology from isosurfaces , 2004, TOGS.

[30]  Bernd Hamann,et al.  Detecting Critical Regions in Scalar Fields , 2003, VisSym.

[31]  Jennifer L. Cuzzocreo,et al.  Volumetric neuroimage analysis extensions for the MIPAV software package , 2007, Journal of Neuroscience Methods.

[32]  James Vanderhyde,et al.  Extraction of topologically simple isosurfaces from volume datasets , 2003, IEEE Visualization, 2003. VIS 2003..