Multi-target regressor chains with repetitive permutation scheme for characterization of built environments with remote sensing

[1]  José Manuel Benítez,et al.  Neural Networks in R Using the Stuttgart Neural Network Simulator: RSNNS , 2012 .

[2]  Grigorios Tsoumakas,et al.  Multi-target regression via input space expansion: treating targets as inputs , 2012, Machine Learning.

[3]  Hannes Taubenböck,et al.  On the Effect of Spatially Non-Disjoint Training and Test Samples on Estimated Model Generalization Capabilities in Supervised Classification With Spatial Features , 2017, IEEE Geoscience and Remote Sensing Letters.

[4]  Grigorios Tsoumakas,et al.  Multi-Label Classification: An Overview , 2007, Int. J. Data Warehous. Min..

[5]  Hannes Taubenböck,et al.  Multi-sensor feature fusion for very high spatial resolution built-up area extraction in temporary settlements , 2018 .

[6]  Andy Liaw,et al.  Classification and Regression by randomForest , 2007 .

[7]  Vojislav Kecman,et al.  Multi-target support vector regression via correlation regressor chains , 2017, Inf. Sci..

[8]  Hannes Taubenböck,et al.  How good is the map? A multi-scale cross-comparison framework for global settlement layers: Evidence from Central Europe , 2016 .

[9]  R.M. Haralick,et al.  Statistical and structural approaches to texture , 1979, Proceedings of the IEEE.

[10]  Hannes Taubenböck,et al.  Virtual Support Vector Machines with self-learning strategy for classification of multispectral remote sensing imagery , 2019, ISPRS Journal of Photogrammetry and Remote Sensing.

[11]  David H. Wolpert,et al.  Stacked generalization , 1992, Neural Networks.

[12]  M. Kim,et al.  A convolutional neural network regression for quantifying cyanobacteria using hyperspectral imagery , 2019, Remote Sensing of Environment.

[13]  Tao Zhang,et al.  Urban Building Density Estimation From High-Resolution Imagery Using Multiple Features and Support Vector Regression , 2017, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[14]  Sebastián Ventura,et al.  Performing Multi-Target Regression via a Parameter Sharing-Based Deep Network , 2019, Int. J. Neural Syst..

[15]  Matthias Drusch,et al.  Sentinel-2: ESA's Optical High-Resolution Mission for GMES Operational Services , 2012 .

[16]  Patrick Marques Ciarelli,et al.  Outlier Robust Extreme Learning Machine for Multi-Target Regression , 2019, ArXiv.

[17]  Hannes Taubenböck,et al.  Multistrategy ensemble regression for mapping of built-up density and height with Sentinel-2 data , 2020 .

[18]  Pierre Soille,et al.  Morphological Image Analysis , 1999 .

[19]  G. F. Hughes,et al.  On the mean accuracy of statistical pattern recognizers , 1968, IEEE Trans. Inf. Theory.

[20]  Roberta E. Martin,et al.  Multi-method ensemble selection of spectral bands related to leaf biochemistry , 2015 .

[21]  Hannes Taubenböck,et al.  The Physical Density of the City - Deconstruction of the Delusive Density Measure with Evidence from Two European Megacities , 2016, ISPRS Int. J. Geo Inf..

[22]  Lorenzo Bruzzone,et al.  Kernel-based methods for hyperspectral image classification , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[23]  Hannes Taubenböck,et al.  TanDEM-X mission—new perspectives for the inventory and monitoring of global settlement patterns , 2012 .

[24]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[25]  Luis Alonso,et al.  Multioutput Support Vector Regression for Remote Sensing Biophysical Parameter Estimation , 2011, IEEE Geoscience and Remote Sensing Letters.

[26]  Avik Bhattacharya,et al.  Joint estimation of Plant Area Index (PAI) and wet biomass in wheat and soybean from C-band polarimetric SAR data , 2019, Int. J. Appl. Earth Obs. Geoinformation.

[27]  Xiao Xiang Zhu,et al.  Large-Area Characterization of Urban Morphology—Mapping of Built-Up Height and Density Using TanDEM-X and Sentinel-2 Data , 2019, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[28]  Geoff Holmes,et al.  Classifier chains for multi-label classification , 2009, Machine Learning.

[29]  Hannes Taubenböck,et al.  Multitask Active Learning for Characterization of Built Environments With Multisensor Earth Observation Data , 2017, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[30]  Yang Wang,et al.  RMoR-Aion: Robust Multioutput Regression by Simultaneously Alleviating Input and Output Noises , 2020, IEEE Transactions on Neural Networks and Learning Systems.

[31]  Haitao Liu,et al.  Remarks on multi-output Gaussian process regression , 2018, Knowl. Based Syst..

[32]  Avik Bhattacharya,et al.  BiophyNet: A Regression Network for Joint Estimation of Plant Area Index and Wet Biomass From SAR Data , 2021, IEEE Geoscience and Remote Sensing Letters.

[33]  Vladimir Vapnik,et al.  Support-vector networks , 2004, Machine Learning.

[34]  Martino Pesaresi,et al.  Leveraging ALOS-2 PALSAR-2 for Mapping Built-Up Areas and Assessing Their Vertical Component , 2020, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[35]  Bernhard Schölkopf,et al.  A tutorial on support vector regression , 2004, Stat. Comput..

[36]  Patrick Hostert,et al.  National-scale mapping of building height using Sentinel-1 and Sentinel-2 time series , 2021, Remote sensing of environment.

[37]  Ribana Roscher,et al.  Subpixel Mapping of Urban Areas Using EnMAP Data and Multioutput Support Vector Regression , 2017, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[38]  Mark R. Segal,et al.  Multivariate random forests , 2011, WIREs Data Mining Knowl. Discov..

[39]  S. Džeroski,et al.  Using single- and multi-target regression trees and ensembles to model a compound index of vegetation condition , 2009 .

[40]  Fernando Pérez-Cruz,et al.  SVM multiregression for nonlinear channel estimation in multiple-input multiple-output systems , 2004, IEEE Transactions on Signal Processing.

[41]  Concha Bielza,et al.  A survey on multi‐output regression , 2015, WIREs Data Mining Knowl. Discov..

[42]  Saso Dzeroski,et al.  Estimating vegetation height and canopy cover from remotely sensed data with machine learning , 2010, Ecol. Informatics.

[43]  Hannes Taubenböck,et al.  Continental-scale mapping and analysis of 3D building structure , 2020 .

[44]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[45]  Mahesh Pal,et al.  Random forest classifier for remote sensing classification , 2005 .

[46]  Huaijiang Sun,et al.  Multi-output parameter-insensitive kernel twin SVR model , 2020, Neural Networks.