Generating beta random numbers and Dirichlet random vectors in R: The package rBeta2009

A software package, rBeta2009, developed to generate beta random numbers and Dirichlet random vectors in R is presented. The package incorporates state-of-the-art algorithms so as to minimize the computer generation time. In addition, it is designed in a way that (i) the generation efficiency is robust to changes of computer architecture; (ii) memory allocation is flexible; and (iii) the exported objects can be easily integrated with other software. The usage of this package is then illustrated and evaluated in terms of various performance metrics.

[1]  J. R. M. Hosking,et al.  Lagrange‐Multiplier Tests of Multivariate Time‐Series Models , 1981 .

[2]  Makoto Matsumoto,et al.  SIMD-Oriented Fast Mersenne Twister: a 128-bit Pseudorandom Number Generator , 2008 .

[3]  Helio S. Migon,et al.  Dynamic Bayesian beta models , 2011, Comput. Stat. Data Anal..

[4]  Luc Devroye,et al.  The computer generation of poisson random variables , 1981, Computing.

[5]  Ernst Stadlober,et al.  Generating beta variates via patchwork rejection , 2005, Computing.

[6]  Kwong-Ip Liu,et al.  HKBU Institutional Repository , 2018 .

[7]  Narayanaswamy Balakrishnan,et al.  Evaluation of Beta Generation Algorithms , 2009, Commun. Stat. Simul. Comput..

[8]  A. C. Atkinson,et al.  A Switching Algorithm for the Generation of Beta Random Variables with at Least One Parameter Less than 1 , 1976 .

[9]  I. D. Hill,et al.  Generating good pseudo-random numbers , 2006, Comput. Stat. Data Anal..

[10]  J. R. M. Hosking,et al.  The Multivariate Portmanteau Statistic , 1980 .

[11]  A. Narayanan Computer generation of dirichlet random vectors , 1990 .

[12]  Bruce W. Schmeiser,et al.  Beta Variate Generation via Exponential Majorizing Functions , 1980, Oper. Res..

[13]  Russell C. H. Cheng Generating beta variates with nonintegral shape parameters , 1978, CACM.

[14]  N. Balakrishnan,et al.  Evaluation of algorithms for generating Dirichlet random vectors , 2011 .

[15]  John Aitchison,et al.  The Statistical Analysis of Compositional Data , 1986 .

[16]  Dirk Eddelbuettel,et al.  Rcpp: Seamless R and C++ Integration , 2011 .

[17]  Robert V. Hogg,et al.  Introduction to Mathematical Statistics. , 1966 .

[18]  Reuven Y. Rubinstein,et al.  Simulation and the Monte Carlo method , 1981, Wiley series in probability and mathematical statistics.

[19]  G. Box,et al.  On a measure of lack of fit in time series models , 1978 .

[20]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[21]  A. I. McLeod,et al.  Distribution of the Residual Autocorrelations in Multivariate Arma Time Series Models , 1981 .

[22]  Arjun K. Gupta,et al.  Handbook of beta distribution and its applications , 2004 .

[23]  Man-Lai Tang,et al.  Further properties and new applications of the nested Dirichlet distribution , 2010, Comput. Stat. Data Anal..

[24]  W. J. Kennedy,et al.  Algorithms: Communications In Statistics, - Simulation and Computation , 1983 .

[25]  R. V. Foutz A Test for Goodness-of-Fit Based on an Empirical Probability Measure , 1980 .

[26]  Roger W. Abernathy,et al.  Multivariate goodness-of-fit tests based on statistically equivalent blocks , 1993 .

[27]  M. Jöhnk Erzeugung von betaverteilten und gammaverteilten Zufallszahlen , 1964 .

[28]  H. Sakasegawa,et al.  Stratified rejection and squeeze method for generating beta random numbers , 1983 .

[29]  J. Tukey Non-Parametric Estimation II. Statistically Equivalent Blocks and Tolerance Regions--The Continuous Case , 1947 .

[30]  Kenneth Lange,et al.  Applications of the Dirichlet distribution to forensic match probabilities , 2005, Genetica.