Band offsets and Schottky barrier heights of high dielectric constant oxides

Oxides with higher dielectric constants are required to act as gate dielectrics for future generations of electronic devices. The electronic structure and band offsets of the oxides on Si have been calculated for many candidate gate oxides using the local density formalism pseudopotential method. The predicted conduction band offsets are similar to those found earlier using the tight-binding method, and where available, with experimental values found by photoemission and internal photoemission. The oxides which are acceptable as gate oxides in terms of their band offsets are ZrO2, HfO2, La2O3, Y2O3, Al2O3, silicates such as ZrSiO4 and HfSiO4 and aluminates such as LaAlO3.

[1]  T. Jackson,et al.  Dielectric functions and optical bandgaps of high-K dielectrics for metal-oxide-semiconductor field-effect transistors by far ultraviolet spectroscopic ellipsometry , 2002 .

[2]  E. Garfunkel,et al.  Soft x-ray photoemission studies of the HfO2/SiO2/Si system , 2002 .

[3]  John Robertson,et al.  Electronic structure and band offsets of high-dielectric-constant gate oxides , 2002 .

[4]  R. Droopad,et al.  Study of Microstructure in SrTiO_3/Si by High-resolution Transmission Electron Microscopy , 2002 .

[5]  Seiichi Miyazaki,et al.  Photoemission study of energy-band alignments and gap-state density distributions for high-k gate dielectrics , 2001 .

[6]  G. Lucovsky Transition from thermally grown gate dielectrics to deposited gate dielectrics for advanced silicon devices: A classification scheme based on bond ionicity , 2001 .

[7]  A. Demkov Investigating Alternative Gate Dielectrics: A Theoretical Approach , 2001 .

[8]  A. Stesmans,et al.  Electron energy barriers between (100)Si and ultrathin stacks of SiO2, Al2O3, and ZrO2 insulators , 2001 .

[9]  R. Wallace,et al.  High-κ gate dielectrics: Current status and materials properties considerations , 2001 .

[10]  James D. Plummer,et al.  Material and process limits in silicon VLSI technology , 2001, Proc. IEEE.

[11]  Gian-Marco Rignanese,et al.  First-principles study of structural, electronic, dynamical, and dielectric properties of zircon , 2001 .

[12]  R. Droopad,et al.  Band discontinuities at epitaxial SrTiO3/Si(001) heterojunctions , 2000 .

[13]  Jon-Paul Maria,et al.  Alternative dielectrics to silicon dioxide for memory and logic devices , 2000, Nature.

[14]  J. Robertson Band offsets of wide-band-gap oxides and implications for future electronic devices , 2000 .

[15]  C. Ambrosch-Draxl,et al.  Electronic structure and ferroelectricity in SrBi 2 Ta 2 O 9 , 2000 .

[16]  Eduard A. Cartier,et al.  Local transport and trapping issues in Al2O3 gate oxide structures , 2000 .

[17]  S. Pennycook,et al.  Hydrogen and the Structure of the Transition Aluminas , 1999 .

[18]  C. W. Chen,et al.  Schottky barrier heights of tantalum oxide, barium strontium titanate, lead titanate, and strontium bismuth tantalate , 1999 .

[19]  Michael Methfessel,et al.  Crystal structures of zirconia from first principles and self-consistent tight binding , 1998 .

[20]  R. Mckee,et al.  Crystalline Oxides on Silicon: The First Five Monolayers , 1998 .

[21]  N. Zakharov,et al.  NANO-phase SBT-family ferroelectric memories , 1998 .

[22]  S. Louie,et al.  Structural properties and quasiparticle band structure of zirconia , 1998 .

[23]  C. Gutleben Band alignments of the platinum/SrBi2Ta2O9 interface , 1997 .

[24]  M. Copel,et al.  Metallization induced band bending of SrTiO3(100) and Ba0.7Sr0.3TiO3 , 1997 .

[25]  H. Okushi,et al.  The properties of Schottky junctions on Nb-doped SrTiO3 (001) , 1997 .

[26]  Y. Taur,et al.  Quantum-mechanical modeling of electron tunneling current from the inversion layer of ultra-thin-oxide nMOSFET's , 1997, IEEE Electron Device Letters.

[27]  D. Schlom,et al.  Thermodynamic stability of binary oxides in contact With silicon , 1996 .

[28]  C. W. Chen,et al.  Electronic structure of the ferroelectric layered perovskite SrBi2Ta2O9 , 1996 .

[29]  Y. Ohji,et al.  Reduction of current leakage in chemical-vapor deposited Ta2O5 thin-films by oxygen-radical annealing [DRAM dielectric] , 1996, IEEE Electron Device Letters.

[30]  W. Mönch Chemical trends of barrier heights in metal-semiconductor contacts: on the theory of the slope parameter , 1996 .

[31]  Alfonso Franciosi,et al.  Heterojunction band offset engineering , 1996 .

[32]  K. Wada,et al.  Optical Transmittance of Anodically Oxidized Aluminum Alloy , 1995 .

[33]  J. Robertson,et al.  Band states and shallow hole traps in Pb(Zr,Ti)O3 ferroelectrics , 1995 .

[34]  M. C. Scott,et al.  Fatigue-free ferroelectric capacitors with platinum electrodes , 1995, Nature.

[35]  D. Vanderbilt,et al.  First-principles investigation of ferroelectricity in perovskite compounds. , 1994, Physical review. B, Condensed matter.

[36]  Ching,et al.  Experimental and theoretical determination of the electronic structure and optical properties of three phases of ZrO2. , 1994, Physical review. B, Condensed matter.

[37]  Robert E. Jones,et al.  A model for electrical conduction in metal‐ferroelectric‐metal thin‐film capacitors , 1994 .

[38]  W. Mönch,et al.  Metal-semiconductor contacts: electronic properties , 1994 .

[39]  D. Dimos,et al.  Shallow Pb3+ hole traps in lead zirconate titanate ferroelectrics , 1993 .

[40]  T. Arias,et al.  Iterative minimization techniques for ab initio total energy calculations: molecular dynamics and co , 1992 .

[41]  S. Komatsu,et al.  Epitaxial growth of SrTiO3 films on Pt electrodes and their electrical properties , 1992 .

[42]  Ronald E. Cohen,et al.  Origin of ferroelectricity in perovskite oxides , 1992, Nature.

[43]  Guanghua Chen,et al.  Asymmetric Electron Spin Resonance Signals in Hydrogenated Amorphous Germanium Carbide Films , 1992 .

[44]  Ching,et al.  Self-consistent band structures, charge distributions, and optical-absorption spectra in MgO, alpha -Al2O3, and MgAl2O4. , 1991, Physical review. B, Condensed matter.

[45]  H. Hasegawa,et al.  Electrical properties of Au/Nb-doped-SrTiO3 contact , 1991 .

[46]  Ching,et al.  Electronic and optical properties of yttria. , 1990, Physical review letters.

[47]  Wei,et al.  Role of d orbitals in valence-band offsets of common-anion semiconductors. , 1987, Physical review letters.

[48]  Christensen,et al.  Acoustic deformation potentials and heterostructure band offsets in semiconductors. , 1987, Physical review. B, Condensed matter.

[49]  Mönch Role of virtual gap states and defects in metal-semiconductor contacts. , 1987, Physical review letters.

[50]  Cole,et al.  Model adsorption potentials for He and Ne on graphite. , 1985, Physical review. B, Condensed matter.

[51]  M. Schlüter Theoretical models of Schottky barriers , 1982 .

[52]  E. H. Rhoderick,et al.  Metal–Semiconductor Contacts , 1979 .

[53]  E. Louis,et al.  The metal-semiconductor interface: Si (111) and zincblende (110) junctions , 1977 .

[54]  D. Dimaria Effects on interface barrier energies of metal‐aluminum oxide‐semiconductor (MAS) structures as a function of metal electrode material, charge trapping, and annealing , 1974 .

[55]  L. Mattheiss Energy Bands for KNiF_{3}, SrTiO_{3}, KMoO_{3}, and KTaO_{3} , 1972 .

[56]  Brian E. Conway,et al.  Modern Aspects of Electrochemistry , 1974 .