Prediction of Glaucoma Progression with Structural Parameters: Comparison of Optical Coherence Tomography and Clinical Disc Parameters.

PURPOSE To test the hypothesis that baseline optical coherence tomography (OCT) measures predict visual field (VF) progression in a cohort of patients with suspected or established glaucoma and compare their performance to semiquantitative optic disc measures. DESIGN Observational cohort study. METHODS Setting: Academic institution. STUDY POPULATION One-hundred seventy-one eyes of 95 patients with good-quality baseline retinal nerve fiber layer (RNFL) and macular OCT images and disc photographs with >2 years of follow-up and ≥5 VFs. OBSERVATION PROCEDURES Baseline macular and RNFL OCT measures and cup-to-disc ratio and disc damage likelihood score. MAIN OUTCOME MEASURES Prediction of glaucomatous visual field deterioration according to trend and event analyses. RESULTS Median (IQR) baseline mean deviation and follow-up were -2.9 (-6.4 to -1.1) dB and 54 (44-65) months, respectively. Seventeen and 25 eyes progressed by final visit based on pointwise event analysis and trend analysis of Visual Field Index (VFI), respectively. Thinner CCT (p =0.005), female gender (p =0.015), and thinner average pRNFL (p =0.001) predicted VF progression on proportional hazard models. Thinner RNFL at baseline (p =0.006) or thinner average GCIPL (p =0.028) along with higher baseline VFI (p =0.018 and 0.048, respectively) predicted VFI progression. Neither optic disc measures predicted VF progression in any of the explored models. CONCLUSIONS Baseline structural OCT measures predicted subsequent VF progression in contrast to semiquantitative optic disc measures. OCT-based structural measures should be included in prognostic models of glaucomatous VF deterioration.

[1]  Jean-Claude Mwanza,et al.  Glaucoma diagnostic accuracy of ganglion cell-inner plexiform layer thickness: comparison with nerve fiber layer and optic nerve head. , 2012, Ophthalmology.

[2]  Gang Li,et al.  Predictive factors for glaucomatous visual field progression in the Advanced Glaucoma Intervention Study. , 2004, Ophthalmology.

[3]  J. Schuman,et al.  Combining measurements from three anatomical areas for glaucoma diagnosis using Fourier-domain optical coherence tomography , 2015, British Journal of Ophthalmology.

[4]  Joseph Caprioli,et al.  The importance of rates in glaucoma. , 2008, American journal of ophthalmology.

[5]  Kouros Nouri-Mahdavi,et al.  Pointwise rates of visual field progression cluster according to retinal nerve fiber layer bundles. , 2012, Investigative ophthalmology & visual science.

[6]  C. Leung,et al.  Impact of Rates of Change of Lamina Cribrosa and Optic Nerve Head Surface Depths on Visual Field Progression in Glaucoma. , 2017, Investigative ophthalmology & visual science.

[7]  B. Bengtsson,et al.  A visual field index for calculation of glaucoma rate of progression. , 2008, American journal of ophthalmology.

[8]  Youngrok Lee,et al.  Retinal nerve fiber layer normative classification by optical coherence tomography for prediction of future visual field loss. , 2011, Investigative ophthalmology & visual science.

[9]  Young H. Kwon,et al.  Primary open-angle glaucoma. , 2009, The New England journal of medicine.

[10]  M. Prins,et al.  An evidence-based review of prognostic factors for glaucomatous visual field progression. , 2013, Ophthalmology.

[11]  P. Lichter Variability of expert observers in evaluating the optic disc. , 1976, Transactions of the American Ophthalmological Society.

[12]  G. Tomita,et al.  Baseline thickness of macular ganglion cell complex predicts progression of visual field loss , 2013, Graefe's Archive for Clinical and Experimental Ophthalmology.

[13]  R. Ritch,et al.  Risk factors for visual field progression in treated glaucoma. , 2010, Archives of ophthalmology.

[14]  M. C. Leske,et al.  Measuring visual field progression in the Early Manifest Glaucoma Trial. , 2003, Acta ophthalmologica Scandinavica.

[15]  Ryo Asaoka,et al.  Applying "Lasso" Regression to Predict Future Visual Field Progression in Glaucoma Patients. , 2015, Investigative ophthalmology & visual science.

[16]  S. Yun,et al.  Twenty-four hour ocular perfusion pressure fluctuation and risk of normal-tension glaucoma progression. , 2009, Investigative ophthalmology & visual science.

[17]  F. Medeiros,et al.  Prediction of functional loss in glaucoma from progressive optic disc damage. , 2009, Archives of ophthalmology.

[18]  Robert N Weinreb,et al.  Combining structural and functional measurements to improve estimates of rates of glaucomatous progression. , 2012, American journal of ophthalmology.

[19]  J. Schuman,et al.  Baseline Fourier-Domain Optical Coherence Tomography Structural Risk Factors for Visual Field Progression in the Advanced Imaging for Glaucoma Study. , 2016, American journal of ophthalmology.

[20]  Lindsey S. Folio,et al.  Retinal nerve fibre layer and visual function loss in glaucoma: the tipping point , 2011, British Journal of Ophthalmology.

[21]  Hiroshi Murata,et al.  Applying “Lasso” Regression to Predict Future Glaucomatous Visual Field Progression in the Central 10 Degrees , 2016, Journal of glaucoma.

[22]  Douglas Hoffman,et al.  Comparison of methods to predict visual field progression in glaucoma. , 2005, Archives of ophthalmology.

[23]  J. Schuman,et al.  Predicting Development of Glaucomatous Visual Field Conversion Using Baseline Fourier-Domain Optical Coherence Tomography. , 2016, American journal of ophthalmology.

[24]  H. Quigley,et al.  The number of people with glaucoma worldwide in 2010 and 2020 , 2006, British Journal of Ophthalmology.

[25]  Ivan Maynart Tavares,et al.  The disc damage likelihood scale: Diagnostic accuracy and correlations with cup-to-disc ratio, structural tests and standard automated perimetry , 2017, PloS one.

[26]  M. Ryan,et al.  Monitoring ocular hypertension, how much and how often? A cost-effectiveness perspective , 2015, British Journal of Ophthalmology.

[27]  Hiroshi Murata,et al.  A novel method to predict visual field progression more accurately, using intraocular pressure measurements in glaucoma patients , 2016, Scientific Reports.

[28]  G. Richard,et al.  Glaucoma progression is associated with decreased blood flow velocities in the short posterior ciliary artery , 2006, British Journal of Ophthalmology.

[29]  Robert N Weinreb,et al.  The structure and function relationship in glaucoma: implications for detection of progression and measurement of rates of change. , 2012, Investigative ophthalmology & visual science.

[30]  J. Caprioli,et al.  Prediction of visual field progression in glaucoma. , 2004, Investigative ophthalmology & visual science.

[31]  David P Crabb,et al.  Monitoring glaucomatous visual field progression: the effect of a novel spatial filter. , 2007, Investigative ophthalmology & visual science.

[32]  Robert N Weinreb,et al.  Comparison of HRT-3 glaucoma probability score and subjective stereophotograph assessment for prediction of progression in glaucoma. , 2008, Investigative ophthalmology & visual science.

[33]  K. Sung,et al.  Lamina Cribrosa-Related Parameters Assessed by Optical Coherence Tomography for Prediction of Future Glaucoma Progression , 2016, Current eye research.

[34]  J. Crowston,et al.  Validation of a predictive model to estimate the risk of conversion from ocular hypertension to glaucoma. , 2005, Archives of ophthalmology.

[35]  F. Medeiros,et al.  Improved Prediction of Rates of Visual Field Loss in Glaucoma Using Empirical Bayes Estimates of Slopes of Change , 2012, Journal of glaucoma.

[36]  A. Tuulonen,et al.  Nerve fiber layer defects with normal visual fields. Do normal optic disc and normal visual field indicate absence of glaucomatous abnormality? , 1993, Ophthalmology.

[37]  F. Fitzke,et al.  Improving the prediction of visual field progression in glaucoma using spatial processing. , 1997, Ophthalmology.

[38]  Antonio Martínez,et al.  Predictive value of colour Doppler imaging in a prospective study of visual field progression in primary open-angle glaucoma. , 2005, Acta ophthalmologica Scandinavica.

[39]  M. C. Leske,et al.  Predictors of long-term progression in the early manifest glaucoma trial. , 2007, Ophthalmology.

[40]  M. Ang,et al.  Central corneal thickness in glaucoma , 2016, Current opinion in ophthalmology.

[41]  M. Prins,et al.  Prediction of Glaucomatous Visual Field Progression Using Baseline Clinical Data , 2016, Journal of glaucoma.

[42]  A. Tafreshi,et al.  Incorporating risk factors to improve the assessment of rates of glaucomatous progression. , 2012, Investigative ophthalmology & visual science.

[43]  A. Tafreshi,et al.  Baseline optical coherence tomography predicts the development of glaucomatous change in glaucoma suspects. , 2006, American journal of ophthalmology.

[44]  Jong Jin Jung,et al.  Glaucoma progression in eyes with a history of refractive corneal surgery. , 2012, Investigative ophthalmology & visual science.

[45]  Richard A. Russell,et al.  Improved estimates of visual field progression using bayesian linear regression to integrate structural information in patients with ocular hypertension. , 2012, Investigative ophthalmology & visual science.

[46]  Chris A. Johnson,et al.  Structure and function evaluation (SAFE): I. criteria for glaucomatous visual field loss using standard automated perimetry (SAP) and short wavelength automated perimetry (SWAP). , 2002, American journal of ophthalmology.

[47]  L. Pablo,et al.  Role of Color Doppler Imaging in Early Diagnosis and Prediction of Progression in Glaucoma , 2013, BioMed research international.

[48]  Tien Yin Wong,et al.  Diagnostic Performance of the ISNT Rule for Glaucoma Based on the Heidelberg Retinal Tomograph. , 2013, Translational vision science & technology.

[49]  Robert N Weinreb,et al.  Retinal nerve fiber layer thickness measurements with scanning laser polarimetry predict glaucomatous visual field loss. , 2004, American journal of ophthalmology.

[50]  M. Nicolela,et al.  Properties of the statpac visual field index. , 2011, Investigative ophthalmology & visual science.

[51]  G. Spaeth,et al.  The disc damage likelihood scale: reproducibility of a new method of estimating the amount of optic nerve damage caused by glaucoma. , 2002, Transactions of the American Ophthalmological Society.

[52]  B. Bengtsson,et al.  Rates of visual field progression in clinical glaucoma care , 2012, Acta ophthalmologica.

[53]  Chris A. Johnson,et al.  The Ocular Hypertension Treatment Study: baseline factors that predict the onset of primary open-angle glaucoma. , 2002 .

[54]  Ryo Asaoka,et al.  Measuring Visual Field Progression in the Central 10 Degrees Using Additional Information from Central 24 Degrees Visual Fields and ‘Lasso Regression’ , 2013, PloS one.

[55]  R. Ritch,et al.  Risk Calculation Variability Over Time in Ocular Hypertensive Subjects , 2014, Journal of glaucoma.

[56]  S. Resnikoff,et al.  Global data on visual impairment in the year 2002. , 2004, Bulletin of the World Health Organization.

[57]  Jost B Jonas,et al.  Neuroretinal rim width ratios in morphological glaucoma diagnosis , 1998, The British journal of ophthalmology.

[58]  Robert Ritch,et al.  A validated risk calculator to assess risk and rate of visual field progression in treated glaucoma patients. , 2012, Investigative ophthalmology & visual science.

[59]  M. Nicolela,et al.  Incidence and rates of visual field progression after longitudinally measured optic disc change in glaucoma. , 2009, Ophthalmology.

[60]  Seung Woo Hong,et al.  Glaucoma Specialist Optic Disc Margin, Rim Margin, and Rim Width Discordance in Glaucoma and Glaucoma Suspect Eyes. , 2018, American journal of ophthalmology.

[61]  The Fast Component of Visual Field Decay Rate Correlates With Disc Rim Area Change Throughout the Entire Range of Glaucomatous Damage. , 2015, Investigative ophthalmology & visual science.

[62]  Robert Ritch,et al.  A Test of a Model of Glaucomatous Damage of the Macula With High-Density Perimetry: Implications for the Locations of Visual Field Test Points. , 2014, Translational vision science & technology.