Standard and modified Judd-Ofelt theories in Pr3+-doped calcium aluminosilicate glasses: A comparative analysis

[1]  M. Baesso,et al.  Upconversion luminescence and hypersensitive transitions of Pr3+–doped calcium aluminosilicate glasses , 2018, Journal of Luminescence.

[2]  N. Veeraiah,et al.  Influence of Mn 2+ sensitizers on orange-red emission of Pr 3+ ions in BaO-Al 2 O 3 -B 2 O 3 -SiO 2 glass system , 2017 .

[3]  Rong Chen,et al.  KSr4(BO3)3:Pr3+: A new red-emitting phosphor for blue-pumped white light-emitting diodes , 2017 .

[4]  V. Naresh,et al.  Influence of multiphonon and cross relaxations on 3P0 and 1D2 emission levels of Pr3+ doped borosilicate glasses for broad band signal amplification , 2016 .

[5]  Zhisong Xiao,et al.  Luminescence and Judd–Ofelt analysis of the Pr3+ doped fluorotellurite glass , 2015 .

[6]  J. Nikkel,et al.  Index of refraction, Rayleigh scattering length, and Sellmeier coefficients in solid and liquid argon and xenon , 2015, 1502.04213.

[7]  M. Baesso,et al.  Nd3+ doped CAS glasses: A thermo-optical and spectroscopic investigation , 2014 .

[8]  L. Barbosa,et al.  Near-IR emission in Pr3+single doped and tunable near-IR emission in Pr3+/Yb3+ codoped tellurite tungstate glasses for broadband optical amplifiers , 2014 .

[9]  H. Swart,et al.  The greenish-blue emission and thermoluminescent properties of CaTa2O6:Pr3+ , 2014 .

[10]  M. Baesso,et al.  Spectroscopic studies and downconversion luminescence in OH−-free Pr3+–Yb3+ co-doped low-silica calcium aluminosilicate glasses , 2014 .

[11]  M. Baesso,et al.  Eu2+-doped OH− free calcium aluminosilicate glass: A phosphor for smart lighting , 2013 .

[12]  A. Toncelli,et al.  Growth, optical spectroscopy and Judd–Ofelt analysis of Pr-doped BaY2F8 monocrystals , 2013 .

[13]  Markus P. Hehlen,et al.  50th anniversary of the Judd–Ofelt theory: An experimentalist's view of the formalism and its application , 2013 .

[14]  F. Bretenaker,et al.  Orange emission in Pr3+-doped fluoroindate glasses , 2012, 1210.6313.

[15]  M. Baesso,et al.  The influence of SiO2 content on spectroscopic properties and laser emission efficiency of Yb3+-Er3+ co-doped calcium aluminosilicate glasses , 2012 .

[16]  A. Spierings,et al.  Comparison of density measurement techniques for additive manufactured metallic parts , 2011 .

[17]  A. Agarwal,et al.  Structural, absorption and fluorescence spectral analysis of Pr3+ ions doped zinc bismuth borate glasses , 2011 .

[18]  M. Brik,et al.  Spectroscopic studies of the Pr3+-doped borovanadate glass , 2010 .

[19]  J. Szatkowski,et al.  Effect of thermal treatment on excited state spectroscopy of oxyfluoride borosilicate glass activated by Pr3+ ions , 2009 .

[20]  Mauro Luciano Baesso,et al.  Preparation of Nd2O3-doped calcium aluminosilicate glasses and thermo-optical and mechanical characterization , 2008 .

[21]  M. Baesso,et al.  Long fluorescence lifetime of Ti3+-doped low silica calcium aluminosilicate glass. , 2008, Physical review letters.

[22]  M. Baesso,et al.  Characterization of thermo-optical and mechanical properties of calcium aluminosilicate glasses , 2006 .

[23]  P. Prosposito,et al.  Refractive index measurements of thin films using both Brewster and m-line technique: A combined experimental setup , 2005 .

[24]  L. R. Moorthy,et al.  Modified Judd–Ofelt analysis of Pr3+ ions in mixed alkali chloroborophosphate glasses , 2004 .

[25]  U. Rodríguez-Mendoza,et al.  Optical intensities of Pr3+ ions in transparent oxyfluoride glass and glass–ceramic. Applications of the standard and modified Judd–Ofelt theories , 2004 .

[26]  S. B. Rai,et al.  Effect of lead oxide on optical properties of Pr3+ doped some borate based glasses , 2004 .

[27]  B. Bartolo,et al.  Applications of the Judd–Ofelt theory to the praseodymium ion in laser solids , 2002 .

[28]  C. K. Jayasankar,et al.  Spectroscopy of Pr3+ ions in lithium borate and lithium fluoroborate glasses , 2001 .

[29]  G. Jose,et al.  Judd–Ofelt intensity parameters and laser analysis of Pr3+ doped phosphate glasses sensitized by Mn2+ ions , 2000 .

[30]  Y. Messaddeq,et al.  Application of standard and modified Judd-Ofelt theories to thulium doped fluoroindate glass , 1999 .

[31]  N. Veeraiah,et al.  Optical absorption and photoluminescence properties of Eu3+-doped ZnF2–PbO–TeO2 glasses , 1998 .

[32]  M. Baesso,et al.  Neodymium concentration dependence of thermo—optical properties in low silica calcium aluminate glasses , 1997 .

[33]  Oscar L. Malta,et al.  Judd-Ofelt analysis of Pr3+ ions in fluoroindate glasses : influence of odd third order intensity parameters , 1997 .

[34]  D. Hewak,et al.  Application of a modified Judd-Ofelt theory to praseodymium-doped fluoride glasses , 1995 .

[35]  A. Kaminskii,et al.  Dependence of the Line Strength of f-f Transitions on the Manifold Energy. I. Projector on the Basis of Nonorthogonal Functions , 1990 .

[36]  A. Kaminskii,et al.  Dependence of the Line Strength of f–f Transitions on the Manifold Energy. II. Analysis of Pr3+ in KPrP4O12 , 1990 .

[37]  Renata Reisfeld,et al.  Judd-Ofelt parameters and chemical bonding☆ , 1983 .

[38]  R. Peacock The intensities of lanthanide f ↔ f transitions , 1975 .

[39]  T. E. Varitimos,et al.  Optical Intensities of Rare-Earth Ions in Yttrium Orthoaluminate , 1973 .

[40]  B. Judd,et al.  OPTICAL ABSORPTION INTENSITIES OF RARE-EARTH IONS , 1962 .

[41]  G. S. Ofelt Intensities of Crystal Spectra of Rare‐Earth Ions , 1962 .