ARGET ATRP of Butyl Methacrylate: Utilizing Kinetic Modeling To Understand Experimental Trends

A comprehensive kinetic Monte Carlo (kMC) model is used to interpret and better understand the results of a systematic experimental investigation of activators regenerated by electron transfer atom transfer radical polymerization (ARGET ATRP) of butyl methacrylate (BMA) using Sn(EH)2 as reducing agent, ethyl 2-bromoisobutyrate (EBiB) as ATRP initiator, and CuBr2/TPMA (TPMA: tris[(2-pyridyl)methyl]amine) as deactivator. The model demonstrates the importance of slow initiation, with distinct activation and deactivation rate coefficients for the initiator and polymeric species required to match the experimental data. In addition, the model incorporates a second reduction step for the reducing agent and accounts for diffusional limitations on chain-length-dependent termination. The effect of temperature on the slow ATRP initiation is limited, and a sufficiently high initial reducing agent concentration is crucial to obtain a high conversion, although achieved at the expense of decreased end-group functionality.

[1]  Mathias Destarac,et al.  Controlled Radical Polymerization: Industrial Stakes, Obstacles and Achievements , 2010 .

[2]  K. Matyjaszewski,et al.  Controlled Living Radical Polymerization - Halogen Atom-Transfer Radical Polymerization Promoted by a Cu(I)Cu(II) Redox Process , 1995 .

[3]  K. Matyjaszewski,et al.  Activator Generated by Electron Transfer for Atom Transfer Radical Polymerization , 2005 .

[4]  Gregory T. Russell,et al.  Chain-length-dependent termination in radical polymerization: Subtle revolution in tackling a long-standing challenge , 2009 .

[5]  K. Matyjaszewski,et al.  Effect of Penultimate Unit on the Activation Process in ATRP , 2003 .

[6]  M. Monteiro,et al.  Kinetic Simulations of Atom Transfer Radical Polymerization (ATRP) in Light of Chain Length Dependent Termination , 2010 .

[7]  H. Fischer,et al.  Rate constants for some prototype radical reactions in liquids by kinetic electron spin resonance , 1987 .

[8]  K. Matyjaszewski,et al.  Temperature Effect on Activation Rate Constants in ATRP: New Mechanistic Insights into the Activation Process , 2009 .

[9]  D. Bertin,et al.  Living Character of Polymer Chains Prepared via Nitroxide-Mediated Controlled Free-Radical Polymerization of Methyl Methacrylate in the Presence of a Small Amount of Styrene at Low Temperature , 2006 .

[10]  H. Fischer The persistent radical effect: a principle for selective radical reactions and living radical polymerizations. , 2001, Chemical reviews.

[11]  V. Percec,et al.  Synthesis of perfectly bifunctional polyacrylates by single-electron-transfer living radical polymerization , 2007 .

[12]  Bo-Geng Li,et al.  Kinetics and Modeling of Solution ARGET ATRP of Styrene, Butyl Acrylate, and Methyl Methacrylate , 2011 .

[13]  D. Achilias,et al.  A Review of Modeling of Diffusion Controlled Polymerization Reactions , 2007 .

[14]  K. Matyjaszewski,et al.  Activators regenerated by electron transfer for atom-transfer radical polymerization of (meth)acrylates and related block copolymers. , 2006, Angewandte Chemie.

[15]  K. Matyjaszewski,et al.  Thermodynamic Components of the Atom Transfer Radical Polymerization Equilibrium: Quantifying Solvent Effects , 2009 .

[16]  R. Gil,et al.  Polystyrene with Improved Chain‐End Functionality and Higher Molecular Weight by ARGET ATRP , 2008 .

[17]  K. Matyjaszewski,et al.  Controlled/“Living” Radical Polymerization of Methyl Methacrylate by Atom Transfer Radical Polymerization , 1997 .

[18]  Antonina Simakova,et al.  Aqueous ARGET ATRP , 2012 .

[19]  N. Tsarevsky,et al.  Low-catalyst concentration atom transfer radical polymerization of a phosphonium salt-type monomer , 2012 .

[20]  Robin A. Hutchinson,et al.  A comprehensive kinetic model for high‐temperature free radical production of styrene/methacrylate/acrylate resins , 2011 .

[21]  Krzysztof Matyjaszewski,et al.  Kinetic Modeling of ICAR ATRP , 2012 .

[22]  K. Matyjaszewski,et al.  Effect of [PMDETA]/[Cu(I)] Ratio, Monomer, Solvent, Counterion, Ligand, and Alkyl Bromide on the Activation Rate Constants in Atom Transfer Radical Polymerization , 2003 .

[23]  K. Matyjaszewski,et al.  Activators Regenerated by Electron Transfer for Atom Transfer Radical Polymerization of Styrene , 2006 .

[24]  Dagmar R. D’hooge,et al.  Origin of the Difference between Branching in Acrylates Polymerization under Controlled and Free Radical Conditions: A Computational Study of Competitive Processes , 2011 .

[25]  K. Matyjaszewski,et al.  Covalently incorporated protein–nanogels using AGET ATRP in an inverse miniemulsion , 2011 .

[26]  K. Matyjaszewski,et al.  Improving the “Livingness” of ATRP by Reducing Cu Catalyst Concentration , 2013 .

[27]  K. Matyjaszewski,et al.  Ab Initio Study of the Penultimate Effect for the ATRP Activation Step Using Propylene, Methyl Acrylate, and Methyl Methacrylate Monomers , 2007 .

[28]  D. Gillespie Exact Stochastic Simulation of Coupled Chemical Reactions , 1977 .

[29]  K. Matyjaszewski,et al.  A green route to well-defined high-molecular-weight (Co)polymers using ARGET ATRP with alkyl pseudohalides and copper catalysis. , 2010, Angewandte Chemie.

[30]  K. Matyjaszewski,et al.  Determination of equilibrium constants for atom transfer radical polymerization. , 2006, Journal of the American Chemical Society.

[31]  K. Matyjaszewski,et al.  ICAR ATRP with ppm Cu Catalyst in Water , 2012 .

[32]  K. Matyjaszewski,et al.  Atom transfer radical polymerization. , 2001, Chemical reviews.

[33]  Dagmar R. D’hooge,et al.  Methodology for Kinetic Modeling of Atom Transfer Radical Polymerization , 2009 .

[34]  K. Matyjaszewski,et al.  Controlled/“Living” Atom Transfer Radical Polymerization of Methyl Methacrylate Using Various Initiation Systems , 1998 .

[35]  Dagmar R. D’hooge,et al.  Computer-Aided Optimization of Conditions for Fast and Controlled ICAR ATRP of n-Butyl Acrylate , 2013 .

[36]  J. Barth,et al.  Chain-Length-Dependent Termination in n-Butyl Methacrylate and tert-Butyl Methacrylate Bulk Homopolymerizations Studied via SP-PLP-ESR , 2009 .

[37]  K. Matyjaszewski,et al.  Diminishing catalyst concentration in atom transfer radical polymerization with reducing agents , 2006, Proceedings of the National Academy of Sciences.

[38]  Guy Marin,et al.  Kinetic Monte Carlo Modeling of the Sulfinyl Precursor Route for Poly(p-phenylene vinylene) Synthesis , 2011 .

[39]  G. Britovsek,et al.  Non-heme iron(II) complexes containing tripodal tetradentate nitrogen ligands and their application in alkane oxidation catalysis. , 2005, Inorganic chemistry.

[40]  K. Matyjaszewski,et al.  Kinetic Modeling of Normal ATRP, Normal ATRP with [CuII]0, Reverse ATRP and SR&NI ATRP , 2008 .

[41]  M. Buback,et al.  Equilibrium Constants and Activation Rate Coefficients for Atom Transfer Radical Polymerizations at Pressures up to 2 500 Bar , 2010 .

[42]  Thomas P. Davis,et al.  Critically evaluated rate coefficients for free‐radical polymerization, 2.. Propagation rate coefficients for methyl methacrylate , 2000 .

[43]  Krzysztof Matyjaszewski,et al.  Controlled/"living" radical polymerization. atom transfer radical polymerization in the presence of transition-metal complexes , 1995 .

[44]  K. Matyjaszewski,et al.  Effects of initiator structure on activation rate constants in ATRP , 2007 .

[45]  K. Matyjaszewski,et al.  Use of Ascorbic Acid as Reducing Agent for Synthesis of Well-Defined Polymers by ARGET ATRP , 2007 .

[46]  M. Wulkow,et al.  The simulation of molecular weight distributions in polyreaction kinetics by discrete Galerkin methods , 1996 .

[47]  William T Eckenhoff,et al.  Highly Efficient Copper-Mediated Atom-Transfer Radical Addition (ATRA) in the Presence of Reducing Agent , 2008 .

[48]  M. Monteiro,et al.  Bimolecular radical termination: New perspectives and insights , 2008 .

[49]  Yu Wang,et al.  Linear Gradient Quality of ATRP Copolymers , 2012 .

[50]  P. Zetterlund Compartmentalization in Atom Transfer Radical Polymerization to High Conversion in Dispersed Systems: Effects of Diffusion-Controlled Reactions , 2010 .

[51]  K. Matyjaszewski,et al.  How Fast Can a CRP Be Conducted with Preserved Chain End Functionality , 2011 .

[52]  Malcolm B. Gillies,et al.  A DFT study of R-X bond dissociation enthalpies of relevance to the initiation process of atom transfer radical polymerization , 2003 .

[53]  V. Percec,et al.  Living radical polymerization of styrene initiated by arenesulfonyl chlorides and CuI(bpy)nCl , 1995 .

[54]  V. Percec,et al.  A comparative computational study of the homolytic and heterolytic bond dissociation energies involved in the activation step of ATRP and SET‐LRP of vinyl monomers , 2007 .

[55]  C. Barner‐Kowollik,et al.  Chain Length Dependent Termination Rate Coefficients of Methyl Methacrylate (MMA) in the Gel Regime: Accessing kti,i Using Reversible Addition-Fragmentation Chain Transfer (RAFT) Polymerization , 2007 .

[56]  K. Matyjaszewski,et al.  Atom transfer radical addition and polymerization reactions catalyzed by ppm amounts of copper complexes. , 2008, Chemical Society reviews.

[57]  M. Jonsson,et al.  Predicting the Limit of Control in the ATRP Process: Results from Kinetic Simulations , 2011 .