Functional verification of pulse frequency modulation-based image sensor for retinal prosthesis by in vitro electrophysiological experiments using frog retina.

The functioning of a 16 x 16 pixel pulse frequency modulation (PFM) image sensor for retinal prosthesis is verified through in vitro electrophysiological experiments using detached frog retinas. This image sensor is a prototype for demonstrating the application to in vitro electrophysiological experiments. Each pixel of the image sensor consists of a pulse generator (PFM photosensor), a stimulus circuit, and a stimulus electrode (Al bonding pad). The image sensor is fabricated using standard 0.6 microm CMOS technology. For in vitro electrophysiological experiments, a Pt/Au stacked electrode is formed on the Al bonding pad of each pixel and the entire sensor is fixed in epoxy resin. The PFM image sensor is confirmed experimentally to provide electrical stimulus to the retinal cells in a detached frog retina.

[1]  D. C. Ng,et al.  Pulse-domain digital image processing for vision chips employing low-voltage operation in deep-submicrometer technologies , 2004, IEEE Journal of Selected Topics in Quantum Electronics.

[2]  B. B. Lee,et al.  Deleterious effects of prolonged electrical excitation of striate cortex in macaques. , 1977, Brain, behavior and evolution.

[3]  E. Zrenner Will Retinal Implants Restore Vision ? , 2002 .

[4]  Keiichiro Kagawa,et al.  Pixel design of pulsed CMOS image sensor for retinal prosthesis with digital photosensitivity control , 2003 .

[5]  E. Zrenner,et al.  Can subretinal microphotodiodes successfully replace degenerated photoreceptors? , 1999, Vision Research.

[6]  A Kawana,et al.  Short- and long-range synchronous activities in dimming detectors of the frog retina , 1999, Visual Neuroscience.

[7]  E. J. Tehovnik Electrical stimulation of neural tissue to evoke behavioral responses , 1996, Journal of Neuroscience Methods.

[8]  J Toyoda,et al.  Application of transretinal current stimulation for the study of bipolar-amacrine transmission , 1984, The Journal of general physiology.

[9]  Yoshihiro Fujita,et al.  A digital pixel image sensor for real-time readout , 2000 .

[10]  A. Y. Chow,et al.  Implantation of silicon chip microphotodiode arrays into the cat subretinal space , 2001, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[11]  J. Rizzo,et al.  Multi-electrode stimulation and recording in the isolated retina , 2000, Journal of Neuroscience Methods.

[12]  Woodward Yang,et al.  A wide-dynamic-range, low-power photosensor array , 1994, Proceedings of IEEE International Solid-State Circuits Conference - ISSCC '94.

[13]  R. Eckmiller Learning retina implants with epiretinal contacts. , 1997, Ophthalmic research.

[14]  Adrian M. Ionescu,et al.  An active microphotodiode array of oscillating pixels for retinal stimulation , 2004 .

[15]  Tetsuya Yagi,et al.  Temporal properties of retinal ganglion cell responses to local transretinal current stimuli in the frog retina , 2005, Vision Research.

[16]  A. L. Byzov,et al.  The response to electric stimulation of horizontal cells in the carp retina. , 1968, Vision research.

[17]  Peter G. LoPresti,et al.  Handbook of Neuroprosthetic Methods , 2002 .

[18]  S. B. Brummer,et al.  Electrochemical Considerations for Safe Electrical Stimulation of the Nervous System with Platinum Electrodes , 1977, IEEE Transactions on Biomedical Engineering.

[19]  Joseph F. Rizzo,et al.  Ocular implants for the blind , 1996 .

[20]  Joseph F Rizzo,et al.  Thresholds for activation of rabbit retinal ganglion cells with an ultrafine, extracellular microelectrode. , 2003, Investigative ophthalmology & visual science.

[21]  Thomas Schanze,et al.  Activation zones in cat visual cortex evoked by electrical retina stimulation , 2002, Graefe's Archive for Clinical and Experimental Ophthalmology.

[22]  J. Weiland,et al.  Retinal prosthesis for the blind. , 2002, Survey of ophthalmology.

[23]  M. Koyanagi,et al.  Three-Dimensionally Stacked Analog Retinal Prosthesis Chip , 2004 .

[24]  K. Dormer Implantable electronic otologic devices for hearing rehabilitation , 2002 .

[25]  J. R. Hughes,et al.  Brief, noninjurious electric waveform for stimulation of the brain. , 1955, Science.

[26]  A. Kaneko,et al.  Ionic mechanisms underlying the responses of off-center bipolar cells in the carp retina. II. Studies on responses evoked by transretinal current stimulation , 1983, The Journal of general physiology.

[27]  B. Hoefflinger,et al.  The development of subretinal microphotodiodes for replacement of degenerated photoreceptors. , 1997, Ophthalmic research.

[28]  Gislin Dagnelie,et al.  Visual perception in a blind subject with a chronic microelectronic retinal prosthesis , 2003, Vision Research.

[29]  Keiichiro Kagawa,et al.  Proposal of Application of Pulsed Vision Chip for Retinal Prosthesis. , 2002 .

[30]  J. Weiland,et al.  Pattern electrical stimulation of the human retina , 1999, Vision Research.

[31]  D Hickingbotham,et al.  Bipolar surface electrical stimulation of the vertebrate retina. , 1994, Archives of ophthalmology.

[32]  E. Zrenner,et al.  Electrical multisite stimulation of the isolated chicken retina , 2000, Vision Research.