Three-Dimensional Chaotic Autonomous System with a Circular Equilibrium: Analysis, Circuit Implementation and Its Fractional-Order Form

A three-dimensional autonomous chaotic system with a circular equilibrium is investigated in this paper. Some dynamical properties and behaviors of this system are described in terms of equilibria, eigenvalue structures, bifurcation diagrams, Lyapunov exponents, time series and phase portraits. For specific parameters, the system displays periodic and chaotic attractors. The physical existence of the chaotic behavior found in the proposed system is verified by using the Orcad-PSpice software and experimental verification. A good qualitative agreement is shown between the experimental results, PSpice and numerical simulations. Furthermore, the commensurate fractional-order version of the system with a circular equilibrium is numerically studied. It is found that chaos exists in this system with order less than three. By tuning the commensurate fractional order, the system with a circular equilibrium displays chaotic and periodic attractors, respectively. Finally, chaos synchronization of identical fractional-order chaotic systems with a circular equilibrium is achieved by using the unidirectional linear error feedback coupling. It is shown that the fractional-order chaotic system can achieve synchronization for appropriate coupling strength.

[1]  Ahmed S. Elwakil,et al.  Measurement of Supercapacitor Fractional-Order Model Parameters From Voltage-Excited Step Response , 2013, IEEE Journal on Emerging and Selected Topics in Circuits and Systems.

[2]  Julien Clinton Sprott,et al.  Simple Chaotic flows with One Stable equilibrium , 2013, Int. J. Bifurc. Chaos.

[3]  B. Maundy,et al.  On a multivibrator that employs a fractional capacitor , 2009 .

[4]  C. P. Silva,et al.  Shil'nikov's theorem-a tutorial , 1993 .

[5]  B. Goswami,et al.  Fabrication of a Fractional Order Capacitor With Desired Specifications: A Study on Process Identification and Characterization , 2011, IEEE Transactions on Electron Devices.

[6]  Khaled N. Salama,et al.  Passive and Active Elements Using Fractional Circuit , 2011 .

[7]  Ahmed S Elwakil,et al.  Fractional-order circuits and systems: An emerging interdisciplinary research area , 2010, IEEE Circuits and Systems Magazine.

[8]  O. Rössler An equation for continuous chaos , 1976 .

[9]  Guanrong Chen,et al.  Classification of Chaos in 3-d Autonomous Quadratic Systems-I: Basic Framework and Methods , 2006, Int. J. Bifurc. Chaos.

[10]  Sajad Jafari,et al.  Three-dimensional chaotic autonomous system with only one stable equilibrium: Analysis, circuit design, parameter estimation, control, synchronization and its fractional-order form , 2014 .

[11]  Tomas Gotthans,et al.  New class of chaotic systems with circular equilibrium , 2015 .

[12]  Julien Clinton Sprott,et al.  Simplest dissipative chaotic flow , 1997 .

[13]  Jan Danckaert,et al.  Chaotic semiconductor ring lasers subject to optical feedback: Applications to chaos-based communications , 2013 .

[14]  J. Sprott,et al.  Some simple chaotic flows. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[15]  Andrew Y. T. Leung,et al.  Synchronization of fractional-order chaotic systems using unidirectional adaptive full-state linear error feedback coupling , 2015, Nonlinear Dynamics.

[16]  Julien Clinton Sprott,et al.  Simple chaotic flows with a line equilibrium , 2013 .

[17]  Guanrong Chen,et al.  YET ANOTHER CHAOTIC ATTRACTOR , 1999 .

[18]  Nikolay V. Kuznetsov,et al.  Hidden oscillations in nonlinear control systems , 2011 .

[19]  Nikolay V. Kuznetsov,et al.  Algorithms for finding hidden oscillations in nonlinear systems. The Aizerman and Kalman conjectures and Chua’s circuits , 2011 .

[20]  G. Leonov,et al.  Localization of hidden Chuaʼs attractors , 2011 .

[21]  Julien Clinton Sprott,et al.  Chaotic flows with a single nonquadratic term , 2014 .

[22]  Paul Woafo,et al.  Bursting generation mechanism in a three-dimensional autonomous system, chaos control, and synchronization in its fractional-order form , 2014 .

[23]  Jinhu Lu,et al.  A New Chaotic Attractor Coined , 2002, Int. J. Bifurc. Chaos.

[24]  T. Kapitaniak,et al.  NOISE-ENHANCED PHASE LOCKING IN A STOCHASTIC BISTABLE SYSTEM DRIVEN BY A CHAOTIC SIGNAL , 1999 .

[25]  Nikolay V. Kuznetsov,et al.  Analytical-Numerical Methods for Hidden Attractors’ Localization: The 16th Hilbert Problem, Aizerman and Kalman Conjectures, and Chua Circuits , 2013 .

[26]  Jan Danckaert,et al.  Dissipative chaos, Shilnikov chaos and bursting oscillations in a three-dimensional autonomous system: theory and electronic implementation , 2013 .

[27]  Julien Clinton Sprott,et al.  A new class of chaotic circuit , 2000 .

[28]  Viet-Thanh Pham,et al.  Constructing a Novel No-Equilibrium Chaotic System , 2014, Int. J. Bifurc. Chaos.

[29]  S. Ikhdair,et al.  Bound states of spatially dependent mass Dirac equation with the Eckart potential including Coulomb tensor interaction , 2014, 1401.7142.

[30]  Jinliang Wang,et al.  Bifurcation and chaos in discrete-time BVP oscillator , 2010 .

[31]  A. Pagano,et al.  Clustering of chaotic dynamics of a lean gas-turbine combustor , 2001 .

[32]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[33]  M. Inoue,et al.  A chaos neuro-computer , 1991 .

[34]  Khaled N. Salama,et al.  Passive and Active Elements Using Fractional ${\rm L}_{\beta} {\rm C}_{\alpha}$ Circuit , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.

[35]  Paul Woafo,et al.  Dynamics and synchronization analysis of coupled fractional-order nonlinear electromechanical systems , 2012 .

[36]  Nikolay V. Kuznetsov,et al.  Analytical-numerical methods for investigation of hidden oscillations in nonlinear control systems , 2011 .

[37]  Karabi Biswas,et al.  A Design Example of a Fractional-Order Kerwin–Huelsman–Newcomb Biquad Filter with Two Fractional Capacitors of Different Order , 2013, Circuits Syst. Signal Process..

[38]  Julien Clinton Sprott,et al.  Elementary quadratic chaotic flows with no equilibria , 2013 .

[39]  Luigi Fortuna,et al.  Fractional Order Systems: Modeling and Control Applications , 2010 .

[40]  Tomasz Kapitaniak,et al.  Co-existing attractors of impact oscillator , 1998 .

[41]  Nikolay V. Kuznetsov,et al.  Hidden attractor in smooth Chua systems , 2012 .

[42]  Nikolay V. Kuznetsov,et al.  Hidden attractors in Dynamical Systems. From Hidden oscillations in Hilbert-Kolmogorov, Aizerman, and Kalman Problems to Hidden Chaotic Attractor in Chua Circuits , 2013, Int. J. Bifurc. Chaos.

[43]  X. Liao,et al.  Cryptanalysis and improvement on a block cryptosystem based on iteration a chaotic map , 2007 .

[44]  Nikolay V. Kuznetsov,et al.  Algorithms for searching for hidden oscillations in the Aizerman and Kalman problems , 2011 .

[45]  Mohammad Saleh Tavazoei,et al.  The effect of fractionality nature in differences between computer simulation and experimental results of a chaotic circuit , 2013 .

[46]  Guanrong Chen,et al.  Constructing a chaotic system with any number of equilibria , 2012, 1201.5751.

[47]  Weihua Deng,et al.  Short memory principle and a predictor-corrector approach for fractional differential equations , 2007 .

[48]  N. Ford,et al.  A Predictor-Corrector Approach for the Numerical Solution of Fractional Differential Equations , 2013 .

[49]  Zhouchao Wei,et al.  Dynamical behaviors of a chaotic system with no equilibria , 2011 .

[50]  Long-Jye Sheu,et al.  A speech encryption using fractional chaotic systems , 2011 .

[51]  Yoshihiko Nakamura,et al.  The chaotic mobile robot , 2001, IEEE Trans. Robotics Autom..

[52]  Mohammad Saleh Tavazoei,et al.  A necessary condition for double scroll attractor existence in fractional-order systems , 2007 .

[53]  S. Westerlund,et al.  Capacitor theory , 1994 .

[54]  Valery Petrov,et al.  Controlling chaos in the Belousov—Zhabotinsky reaction , 1993, Nature.

[55]  G. Leonov,et al.  Hidden Oscillations in Dynamical Systems. 16 Hilbert’s Problem, Aizerman’s and Kalman’s Conjectures, Hidden Attractors in Chua’s Circuits , 2014 .

[56]  Przemyslaw Perlikowski,et al.  Multistability and Rare attractors in van der Pol-Duffing oscillator , 2011, Int. J. Bifurc. Chaos.

[57]  Nikolay V. Kuznetsov,et al.  Analytical-numerical method for attractor localization of generalized Chua's system , 2010, PSYCO.

[58]  Moez Feki,et al.  An adaptive feedback control of linearizable chaotic systems , 2003 .

[59]  Nikolay V. Kuznetsov,et al.  Hidden oscillations in mathematical model of drilling system actuated by induction motor with a wound rotor , 2014 .

[60]  S Yanchuk,et al.  Routes to complex dynamics in a ring of unidirectionally coupled systems. , 2010, Chaos.

[61]  Khaled N. Salama,et al.  Fractional-Order RC and RL Circuits , 2012, Circuits Syst. Signal Process..