New reactions of α-allylation of CH-acids with carbonyl groups

[1]  A. I. Moskalenko,et al.  Development of general methods for the synthesis of new substituted allyl bromides as promising alkenylating agents , 2014, Russian Journal of Organic Chemistry.

[2]  R. Müller,et al.  Synthesis and biological activities of the respiratory chain inhibitor aurachin D and new ring versus chain analogues , 2013, Beilstein journal of organic chemistry.

[3]  H. Fuess,,et al.  Controlling 6-endo-selectivity in oxidation/bromocyclization cascades for synthesis of aplysiapyranoids and other 2,2,6,6-substituted tetrahydropyrans , 2012 .

[4]  A. Saikia,et al.  Synthesis of 2,3,5,6-tetrasubstituted tetrahydropyrans via (3,5)-oxonium-ene reaction. , 2012, Organic & biomolecular chemistry.

[5]  T. Narender,et al.  Synthesis of biaryls via AlCl3 catalyzed domino reaction involving cyclization, dehydration, and oxidation. , 2011, Organic letters.

[6]  Miguel Peña‐López,et al.  A versatile synthesis of fumaquinone. , 2010, The Journal of organic chemistry.

[7]  S. Ruchirawat,et al.  A convergent general strategy for the functionalized 2-aryl cycloalkyl-fused chromans: intramolecular hetero-Diels-Alder reactions of ortho-quinone methides. , 2010, Chemistry.

[8]  Zhangjie Shi,et al.  Intra/intermolecular direct allylic alkylation via Pd(II)-catalyzed allylic C-H activation. , 2008, Journal of the American Chemical Society.

[9]  K. Jitsukawa,et al.  Montmorillonite-entrapped sub-nanoordered Pd clusters as a heterogeneous catalyst for allylic substitution reactions. , 2007, Angewandte Chemie.

[10]  Yoshinori Yamamoto,et al.  Direct allylic substitution of allyl alcohols by carbon pronucleophiles in the presence of a palladium/carboxylic acid catalyst under neat conditions , 2004 .

[11]  S. Zlotin,et al.  Synthesis of derivatives of prenylacetic acids by reactions of alkyl malonate, cyanoacetate, and acetoacetate with alkylating reagents in ionic liquids , 2004 .

[12]  R. Akiyama,et al.  The polymer incarcerated method for the preparation of highly active heterogeneous palladium catalysts. , 2003, Journal of the American Chemical Society.

[13]  F. Ozawa,et al.  (Pi-allyl)palladium complexes bearing diphosphinidenecyclobutene ligands (DPCB): highly active catalysts for direct conversion of allylic alcohols. , 2002, Journal of the American Chemical Society.

[14]  Y. Uozumi,et al.  NEW AMPHIPHILIC PALLADIUM-PHOSPHINE COMPLEXES BOUND TO SOLID SUPPORTS : PREPARATION AND USE FOR CATALYTIC ALLYLIC SUBSTITUTION IN AQUEOUS MEDIA , 1997 .

[15]  E. Blart,et al.  Palladium(O)-catalyzed substitution of allylic substrates in an aqueous-organic medium , 1994 .

[16]  J. Baruah,et al.  Copper(l) promoted allylic nucleophilic substitutions: a synthetic and mechanistic study , 1994 .

[17]  Yoshihisa Watanabe,et al.  Ruthenium complex-catalyzed allylic alkylation of carbonucleophiles with allylic carbonates , 1993 .

[18]  A. Scettri,et al.  Selective C‐Alkylation of 1,3‐Dicarbonyl Compounds. , 1992 .

[19]  D. Sinou,et al.  Palladium(0)-Catalyzed Substitution of Allylic Substrates in a Two-Phase Aqueous-Organic Medium , 1991 .

[20]  J. Michael,et al.  Heterocyclisations induced by thallium(III) acetate: effect of varying the internal nucleophile , 1990 .

[21]  P. Breuilles,et al.  Synthesis with manganic salts; part IV: Free radical trost allylation , 1990 .

[22]  F. Lambert,et al.  High Yield Synthesis of α Propargylic Acrylic Ester: A General Access to α Substituted Acrylic Esters , 1988 .

[23]  M. Julia,et al.  Influence du cuivre sur la substitution des énolates stables par divers halogénures allyliques , 1987 .