Distributions of Off-Diagonal Scattering Matrix Elements: Exact Results

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  E. Rutherford,et al.  The scattering of alpha and beta particles by matter and the structure of the atom , 1911 .

[3]  C. Porter,et al.  Model for Nuclear Reactions with Neutrons , 1954 .

[4]  Claude Mahaux,et al.  Shell-model approach to nuclear reactions , 1969 .

[5]  H. Weidenmüller,et al.  Hauser-Feshbach Theory and Ericson Fluctuations in the Presence of Direct Reactions , 1973 .

[6]  H. Weidenmüller,et al.  The statistical theory of nuclear reactions for strongly overlapping resonances as a theory of transport phenomena , 1975 .

[7]  M. Simbel,et al.  Statistical theory of nuclear cross section fluctuations , 1975 .

[8]  J. W. Tepel Ericson fluctuations and the distribution of randomS-matrix elements , 1975 .

[9]  L. Schäfer,et al.  Disordered system withn orbitals per site: Lagrange formulation, hyperbolic symmetry, and goldstone modes , 1980 .

[10]  P. A. Mello,et al.  Random matrix physics: Spectrum and strength fluctuations , 1981 .

[11]  K. Efetov Supersymmetry and theory of disordered metals , 1983 .

[12]  J. Verbaarschot,et al.  Grassmann integration in stochastic quantum physics: The case of compound-nucleus scattering , 1985 .

[13]  P. A. Mello,et al.  Information theory and statistical nuclear reactions. I. General theory and applications to few-channel problems , 1985 .

[14]  M. Zirnbauer Anderson localization and non-linear sigma model with graded symmetry , 1986 .

[15]  M. Rothstein Integration on noncompact supermanifolds , 1987 .

[16]  A. Kirillov,et al.  Introduction to Superanalysis , 1987 .

[17]  Aaron Szafer,et al.  What is measured when you measure a resistance?—The Landauer formula revisited , 1988 .

[18]  E. Davis,et al.  On the variance of the fluctuating cross section , 1988 .

[19]  J. Stein,et al.  "Quantum" chaos in billiards studied by microwave absorption. , 1990, Physical review letters.

[20]  U. Smilansky,et al.  Random-matrix description of chaotic scattering: Semiclassical approach. , 1990, Physical review letters.

[21]  Smilansky,et al.  Experimental demonstration of chaotic scattering of microwaves. , 1990, Physical review letters.

[22]  S. Iida,et al.  Statistical scattering theory, the supersymmetry method and universal conductance fluctuations , 1990 .

[23]  H. Weidenmüller,et al.  Stochastic versus semiclassical approach to quantum chaotic scattering , 1991 .

[24]  I. Rotter A continuum shell model for the open quantum mechanical nuclear system , 1991 .

[25]  S. Sridhar,et al.  Experimental observation of scarred eigenfunctions of chaotic microwave cavities. , 1991, Physical review letters.

[26]  A. Altland Conductance and conductance fluctuations of mesoscopic systems with different symmetries: a statistical scattering theory approach , 1991 .

[27]  U. Smilansky,et al.  Semiclassical quantization of chaotic billiards: a scattering theory approach , 1992 .

[28]  M. Zirnbauer Super Fourier analysis and localization in disordered wires. , 1992, Physical review letters.

[29]  P. Schardt,et al.  Resonances of a superconducting microwave cavity: A test of the Breit-Wigner formula over a large dynamic range , 1993 .

[30]  Seligman,et al.  Universal and nonuniversal statistical properties of levels and intensities for chaotic Rydberg molecules. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[31]  Gay,et al.  Origin of narrow resonances in the diamagnetic Rydberg spectrum. , 1993, Physical review letters.

[32]  Chaotic scattering in heavy-ion reactions. , 1993, Chaos.

[33]  J. Main,et al.  Rydberg atoms in external fields as an example of open quantum systems with classical chaos , 1994 .

[34]  H. Weidenmueller,et al.  Crossover from Orthogonal to Unitary Symmetry for Ballistic Electron Transport in Chaotic Microstructures , 1994, cond-mat/9412061.

[35]  Mesoscopic transport through chaotic cavities: A random S-matrix theory approach. , 1994, Physical review letters.

[36]  A. Mirlin,et al.  Conductance Fluctuations of Disordered Wires: Fourier Analysis on Supersymmetric Spaces , 1994 .

[37]  M. Stumpf,et al.  Vibrational resonances in molecular photodissociation: from state-specific to statistical behaviour , 1995 .

[38]  H. Sommers,et al.  Chaotic scattering: the supersymmetry method for large number of channels , 1995 .

[39]  Electronic transport through ballistic chaotic cavities: an information theoretic approach , 1995 .

[40]  D. Delande,et al.  RESONANCES IN THE DIAMAGNETIC RYDBERG SPECTRUM: ORDER AND CHAOS , 1995 .

[41]  Generalized circular ensemble of scattering matrices for a chaotic cavity with nonideal leads. , 1995, Physical review. B, Condensed matter.

[42]  Weidenmüller,et al.  Gaussian orthogonal ensemble statistics in a microwave stadium billiard with chaotic dynamics: Porter-Thomas distribution and algebraic decay of time correlations. , 1995, Physical review letters.

[43]  Stein,et al.  Microwave studies of billiard Green functions and propagators. , 1995, Physical review letters.

[44]  Ott,et al.  Wave Chaos Experiments with and without Time Reversal Symmetry: GUE and GOE Statistics. , 1995, Physical review letters.

[45]  Time delay correlations in chaotic scattering: random matrix approach , 1995, chao-dyn/9501018.

[46]  P. A. Mello,et al.  Short paths and information theory in quantum chaotic scattering: transport through quantum dots , 1996 .

[47]  T. Guhr,et al.  Symmetry Breaking and Spectral Statistics of Acoustic Resonances in Quartz Blocks. , 1996, Physical review letters.

[48]  K. Efetov,et al.  Supersymmetry in Disorder and Chaos , 1996 .

[49]  M. Saraceno,et al.  Regular and chaotic regimes in coupled-channel calculations of nuclear scattering processes , 1996 .

[50]  Y. Fyodorov,et al.  Statistics of resonance poles, phase shifts and time delays in quantum chaotic scattering: Random matrix approach for systems with broken time-reversal invariance , 1997 .

[51]  T. Guhr,et al.  RANDOM-MATRIX THEORIES IN QUANTUM PHYSICS : COMMON CONCEPTS , 1997, cond-mat/9707301.

[52]  C. Beenakker Random-matrix theory of quantum transport , 1996, cond-mat/9612179.

[53]  Chaotic scattering on graphs , 1999, Physical review letters.

[54]  K. Richter Semiclassical Theory of Mesoscopic Quantum Systems , 2000 .

[55]  V. Chandrasekar,et al.  Polarimetric Doppler Weather Radar: Notation , 2001 .

[56]  R. A. Méndez-Sánchez,et al.  Distribution of reflection coefficients in absorbing chaotic microwave cavities. , 2003, Physical review letters.

[57]  Statistics of transmitted power in multichannel dissipative ergodic structures. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[58]  Universal spectral statistics in quantum graphs. , 2004, Physical review letters.

[59]  Y. Fyodorov,et al.  Variance of transmitted power in multichannel dissipative ergodic structures invariant under time reversal. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[60]  P. A. Mello,et al.  Quantum Transport in Mesoscopic Systems , 2004 .

[61]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[62]  Edward Ott,et al.  Universal statistics of the scattering coefficient of chaotic microwave cavities. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[63]  R. A. Méndez-Sánchez,et al.  Direct processes in chaotic microwave cavities in the presence of absorption. , 2005, Physical review letters.

[64]  M. Stephanov,et al.  Random Matrices , 2005, hep-ph/0509286.

[65]  Oleh Hul,et al.  Experimental investigation of Wigner's reaction matrix for irregular graphs with absorption , 2005, 0903.2133.

[66]  D. V. Savin,et al.  Scattering, reflection and impedance of waves in chaotic and disordered systems with absorption , 2005, cond-mat/0507016.

[67]  U. Kuhl,et al.  Classical wave experiments on chaotic scattering , 2005 .

[68]  Y. Fyodorov,et al.  CALL FOR PAPERS: Special Issue on `Trends in Quantum Chaotic Scattering' , 2005 .

[69]  Experimental test of universal conductance fluctuations by means of wave-chaotic microwave cavities , 2006, cond-mat/0606650.

[70]  P. Seba,et al.  Experimental and numerical investigation of the reflection coefficient and the distributions of Wigner's reaction matrix for irregular graphs with absorption. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[71]  U. Kuhl,et al.  Resonance widths in open microwave cavities studied by harmonic inversion. , 2007, Physical review letters.

[72]  T. Guhr,et al.  Integration of Grassmann variables over invariant functions on flat superspaces , 2008, 0809.2674.

[73]  J. Verbaarschot,et al.  Induced violation of time-reversal invariance in the regime of weakly overlapping resonances. , 2009, Physical review letters.

[74]  H. Harney,et al.  Quantum chaotic scattering in microwave resonators. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[75]  T. Guhr,et al.  Observation of periodic orbits on curved two-dimensional geometries. , 2010, Physical review letters.

[76]  Joseph Lipka,et al.  A Table of Integrals , 2010 .

[77]  S. Mandt,et al.  Zooming in on local level statistics by supersymmetric extension of free probability , 2009, 0908.1877.

[78]  T. Guhr Supersymmetry in Random Matrix Theory , 2010, 1005.0979.

[79]  Edward Ott,et al.  Universal and nonuniversal properties of wave-chaotic scattering systems. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[80]  G. Mitchell,et al.  Random matrices and chaos in nuclear physics: Nuclear reactions , 2010, 1001.2422.

[81]  Cross-section fluctuations in chaotic scattering , 2009, 0912.4407.

[82]  Thomas M. Antonsen,et al.  Fading Statistics in Communications - a Random Matrix Approach , 2011 .

[83]  H. Weidenmueller,et al.  Correlation Widths in Quantum-Chaotic Scattering , 2010, 1011.0606.

[84]  E. Ott,et al.  First-principles model of time-dependent variations in transmission through a fluctuating scattering environment. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[85]  H. Weidenmüller,et al.  Universal chaotic scattering on quantum graphs. , 2012, Physical review letters.

[86]  Y. Fyodorov,et al.  Universal K-matrix distribution in β = 2 ensembles of random matrices , 2013, 1304.4368.

[87]  T. Guhr,et al.  Distribution of scattering matrix elements in quantum chaotic scattering. , 2013, Physical review letters.

[88]  Margaret Nichols Trans , 2015, De-centering queer theory.