Electron-transfer MALDI MS methodology for microalgae/phytoplankton pigments analysis

[1]  Philipp M. Grande,et al.  Insights into cell wall disintegration of Chlorella vulgaris , 2022, PloS one.

[2]  Carlos A. Padilla Jaramillo,et al.  Photon Harvesting Molecules: Ionization Potential from Quantum Chemical Calculations of Phytoplanktonic Pigments for MALDI-MS Analysis , 2021, Orinoquia.

[3]  I. S. Ismail,et al.  Comprehensive GCMS and LC-MS/MS Metabolite Profiling of Chlorella vulgaris , 2020, Marine drugs.

[4]  T. Takao,et al.  Metastable Decomposition at the Peptide C-Terminus -Possible Use in Protein Identification. , 2020, Rapid communications in mass spectrometry : RCM.

[5]  C. Afonso,et al.  Comprehensive Petroporphyrin Identification in Crude Oils Using Highly Selective Electron Transfer Reactions in MALDI-FTICR-MS , 2019, Energy & Fuels.

[6]  M. Y. Combariza,et al.  Electron-Transfer Ionization of Nanoparticles, Polymers, Porphyrins, and Fullerenes Using Synthetically Tunable α-Cyanophenylenevinylenes as UV MALDI-MS Matrices. , 2019, ACS applied materials & interfaces.

[7]  M. Y. Combariza,et al.  Selective ionization by electron-transfer MALDI-MS of vanadyl porphyrins from crude oils , 2018, Fuel.

[8]  Cesar A Sierra,et al.  Oligo p-Phenylenevinylene Derivatives as Electron Transfer Matrices for UV-MALDI , 2017, Journal of The American Society for Mass Spectrometry.

[9]  Sanjoy Banerjee,et al.  Availability and Utilization of Pigments from Microalgae , 2016, Critical reviews in food science and nutrition.

[10]  F. Palmisano,et al.  Electron-Transfer Secondary Reaction Matrices for MALDI MS Analysis of Bacteriochlorophyll a in Rhodobacter sphaeroides and Its Zinc and Copper Analogue Pigments , 2016, Journal of The American Society for Mass Spectrometry.

[11]  Feng Chen,et al.  Biology and Industrial Applications of Chlorella: Advances and Prospects. , 2016, Advances in biochemical engineering/biotechnology.

[12]  F. Palmisano,et al.  Improvement of chlorophyll identification in foodstuffs by MALDI ToF/ToF mass spectrometry using 1,5-diaminonaphthalene electron transfer secondary reaction matrix , 2015, Analytical and Bioanalytical Chemistry.

[13]  R. Knochenmuss MALDI mechanisms: wavelength and matrix dependence of the coupled photophysical and chemical dynamics model. , 2014, The Analyst.

[14]  R. Knochenmuss MALDI ionization mechanisms: the coupled photophysical and chemical dynamics model correctly predicts 'temperature'-selected spectra. , 2013, Journal of mass spectrometry : JMS.

[15]  Luc Patiny,et al.  ChemCalc: A Building Block for Tomorrow's Chemical Infrastructure , 2013, J. Chem. Inf. Model..

[16]  Huilin Li,et al.  Structural Characterization of Chlorophyll-a by High Resolution Tandem Mass Spectrometry , 2013, Journal of The American Society for Mass Spectrometry.

[17]  R. Cole,et al.  9,10-Diphenylanthracene as a matrix for MALDI-MS electron transfer secondary reactions. , 2012, Journal of mass spectrometry : JMS.

[18]  H. Scheer,et al.  Phytoplankton Pigments: Recent advances in chlorophyll and bacteriochlorophyll biosynthesis , 2011 .

[19]  B. Worm,et al.  Global phytoplankton decline over the past century , 2010, Nature.

[20]  Toshiyuki Suzuki,et al.  Analysis of chlorophylls and their derivatives by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry. , 2009, Analytical biochemistry.

[21]  M. Burford,et al.  Primary production and nutrients in a tropical macrotidal estuary, Darwin Harbour, Australia , 2008 .

[22]  R. Knochenmuss Ion formation mechanisms in UV-MALDI. , 2006, The Analyst.

[23]  Y. Vasil’ev,et al.  Electron transfer reactivity in matrix-assisted laser desorption/ionization (MALDI): ionization energy, electron affinity and performance of the DCTB matrix within the thermochemical framework. , 2006, The journal of physical chemistry. A.

[24]  A. Larkum The Evolution of Chlorophylls and Photosynthesis , 2006 .

[25]  D. Brune,et al.  15N-labeling to determine chlorophyll synthesis and degradation in Synechocystis sp. PCC 6803 strains lacking one or both photosystems. , 2005, Biochimica et biophysica acta.

[26]  V. Brotas,et al.  The use of HPLC pigment analysis to study microphytobenthos communities , 2003 .

[27]  M. Schagerl,et al.  Patterns of major photosynthetic pigments in freshwater algae. 2. Dinophyta, Euglenophyta, Chlorophyceae and Charales , 2003 .

[28]  R Zenobi,et al.  MALDI ionization: the role of in-plume processes. , 2003, Chemical reviews.

[29]  Michael Karas,et al.  Ion formation in MALDI: the cluster ionization mechanism. , 2003, Chemical reviews.

[30]  A. Heck,et al.  Metastable ion formation and disparate charge separation in the gas-phase dissection of protein assemblies studied by orthogonal time-of-flight mass spectrometry , 2001, Journal of the American Society for Mass Spectrometry.

[31]  Crystal S. Thomas,et al.  Computer-assisted high-performance liquid chromatography method development with applications to the isolation and analysis of phytoplankton pigments. , 2001, Journal of chromatography. A.

[32]  M. Karas,et al.  Matrix-assisted laser desorption/ionisation, an experience , 2000 .

[33]  G. Likens,et al.  Composition and Biomass of Phytoplankton , 2000 .

[34]  M Karas,et al.  Ionization in matrix-assisted laser desorption/ionization: singly charged molecular ions are the lucky survivors. , 2000, Journal of mass spectrometry : JMS.

[35]  P. Roepstorff,et al.  Pigments and proteins in green bacterial chlorosomes studied by matrix-assisted laser desorption ionization mass spectrometry. , 2000, European journal of biochemistry.

[36]  J. L. Garrido,et al.  La diversidad pigmentaria del fitoplancton marino: implicaciones ecológicas , 1999 .

[37]  R. Zenobi,et al.  Ion formation in MALDI mass spectrometry , 1999 .

[38]  P. Limbach,et al.  Electron-transfer ionization in matrix-assisted laser desorption/ionization mass spectrometry , 1998 .

[39]  S. Wright,et al.  Phytoplankton Pigments in Oceanography: Guidelines to Modern Methods , 1997 .

[40]  L. Gouveia,et al.  Evolution of pigment composition in Chlorella vulgaris , 1996 .

[41]  C. D'Agrosa,et al.  Mortality of the Vaquita (Phocoena sinus) in gillnet fisheries during 1993-94 , 1995 .

[42]  A. Lewitus,et al.  Improved separations of phytoplankton pigments using temperature-controlled high performance liquid chromatography , 1994 .

[43]  A. Lewitus,et al.  HIGH‐PERFORMANCE LIQUID CHROMATOGRAPHY OF PHYTOPLANKTON PIGMENTS USING A POLYMERIC REVERSED‐PHASE C18 COLUMN 1 , 1992 .

[44]  S. Schwartz,et al.  Identification of chlorophyll derivatives by mass spectrometry , 1991 .

[45]  C. Wilkins,et al.  Laser desorption Fourier transform mass spectrometry of chlorophyll A and chlorophyll B. , 1986, Journal of the American Chemical Society.

[46]  J. Tabet,et al.  Time-resolved laser desorption. III. The metastable decomposition of chlorophyll-a and some derivatives , 1985 .

[47]  A. Wellburn,et al.  Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents , 1983 .

[48]  B. Weedon,et al.  Mass spectrometry of carotenoid epoxides and furanoid oxides , 1966 .

[49]  D. Arnon COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. , 1949, Plant physiology.