The rapid evolution of highly efficient perovskite solar cells

Perovskite solar cells (PSCs) have attracted much attention because of their rapid rise to 22% efficiencies. Here, we review the rapid evolution of PSCs as they enter a new phase that could revolutionize the photovoltaic industry. In particular, we describe the properties that make perovskites so remarkable, and the current understanding of the PSC device physics, including the operation of state-of-the-art solar cells with efficiencies above 20%. The extraordinary progress of long-term stability is discussed and we provide an outlook on what the future of PSCs might soon bring the photovoltaic community. Some challenges remain in terms of reducing non-radiative recombination and increasing conductivity of the different device layers, and these will be discussed in depth in this review.

[1]  Sandeep Kumar Pathak,et al.  Lead-free organic–inorganic tin halide perovskites for photovoltaic applications , 2014 .

[2]  Nam-Gyu Park,et al.  Highly Reproducible Perovskite Solar Cells with Average Efficiency of 18.3% and Best Efficiency of 19.7% Fabricated via Lewis Base Adduct of Lead(II) Iodide. , 2015, Journal of the American Chemical Society.

[3]  Yaohua Mai,et al.  Controllable Grain Morphology of Perovskite Absorber Film by Molecular Self-Assembly toward Efficient Solar Cell Exceeding 17%. , 2015, Journal of the American Chemical Society.

[4]  Rachel C. Kurchin,et al.  Investigation of Bismuth Triiodide (BiI3) for Photovoltaic Applications. , 2015, The journal of physical chemistry letters.

[5]  Jinli Yang,et al.  Compact layer free perovskite solar cells with 13.5% efficiency. , 2014, Journal of the American Chemical Society.

[6]  Guglielmo Lanzani,et al.  Excitons versus free charges in organo-lead tri-halide perovskites , 2014, Nature Communications.

[7]  Mohammad Khaja Nazeeruddin,et al.  Improved performance and stability of perovskite solar cells by crystal crosslinking with alkylphosphonic acid ω-ammonium chlorides. , 2015, Nature chemistry.

[8]  H. Snaith,et al.  Structural and optical properties of methylammonium lead iodide across the tetragonal to cubic phase transition: implications for perovskite solar cells , 2016 .

[9]  F. Giordano,et al.  Ionic Liquid Control Crystal Growth to Enhance Planar Perovskite Solar Cells Efficiency , 2016, Advanced Energy Materials.

[10]  K. Sopian,et al.  A review of organic small molecule-based hole-transporting materials for meso-structured organic-inorganic perovskite solar cells , 2016 .

[11]  Michael Grätzel,et al.  Highly efficient planar perovskite solar cells through band alignment engineering , 2015 .

[12]  S. Zakeeruddin,et al.  Enhancing Efficiency of Perovskite Solar Cells via N‐doped Graphene: Crystal Modification and Surface Passivation , 2016, Advanced materials.

[13]  Gerrit Boschloo,et al.  Bismuth Based Hybrid Perovskites A3Bi2I9 (A: Methylammonium or Cesium) for Solar Cell Application , 2015, Advanced materials.

[14]  Mercouri G Kanatzidis,et al.  Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. , 2013, Inorganic chemistry.

[15]  Qi Chen,et al.  Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells. , 2014, Nano letters.

[16]  Sandeep Kumar Pathak,et al.  Enhanced Efficiency and Stability of Perovskite Solar Cells Through Nd‐Doping of Mesostructured TiO2 , 2016 .

[17]  Wei Zhang,et al.  Optical properties and limiting photocurrent of thin-film perovskite solar cells , 2015 .

[18]  Mohammad Khaja Nazeeruddin,et al.  Predicting the Open‐Circuit Voltage of CH3NH3PbI3 Perovskite Solar Cells Using Electroluminescence and Photovoltaic Quantum Efficiency Spectra: the Role of Radiative and Non‐Radiative Recombination , 2015 .

[19]  Peng Gao,et al.  Mixed-organic-cation perovskite photovoltaics for enhanced solar-light harvesting. , 2014, Angewandte Chemie.

[20]  Yanfa Yan,et al.  Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber , 2014 .

[21]  Hao Gao,et al.  A facile, solvent vapor-fumigation-induced, self-repair recrystallization of CH3NH3PbI3 films for high-performance perovskite solar cells. , 2015, Nanoscale.

[22]  Teruya Ishihara,et al.  Optical properties of PbI-based perovskite structures , 1994 .

[23]  Thomas Bein,et al.  Efficient Planar Heterojunction Perovskite Solar Cells Based on Formamidinium Lead Bromide. , 2014, The journal of physical chemistry letters.

[24]  Nakita K. Noel,et al.  Anomalous Hysteresis in Perovskite Solar Cells. , 2014, The journal of physical chemistry letters.

[25]  Guan-Wei Wu,et al.  Solvent-extraction crystal growth for highly efficient carbon-based mesoscopic perovskite solar cells free of hole conductors , 2016 .

[26]  T. Edvinsson,et al.  Goldschmidt’s Rules and Strontium Replacement in Lead Halogen Perovskite Solar Cells: Theory and Preliminary Experiments on CH3NH3SrI3 , 2015 .

[27]  Martin Schreyer,et al.  Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3) PbI3 for solid-state sensitised solar cell applications , 2013 .

[28]  Seonhee Lee,et al.  Self-formed grain boundary healing layer for highly efficient CH3NH3PbI3 perovskite solar cells , 2016, Nature Energy.

[29]  D. Mitzi,et al.  Conducting Layered Organic-inorganic Halides Containing <110>-Oriented Perovskite Sheets , 1995, Science.

[30]  David B. Mitzi,et al.  Synthesis and Characterization of [NH2C(I):NH2]3MI5 (M = Sn, Pb): Stereochemical Activity in Divalent Tin and Lead Halides Containing Single .ltbbrac.110.rtbbrac. Perovskite Sheets , 1995 .

[31]  Prashant V Kamat,et al.  Best Practices in Perovskite Solar Cell Efficiency Measurements. Avoiding the Error of Making Bad Cells Look Good. , 2015, The journal of physical chemistry letters.

[32]  N. Jaidane,et al.  Raman study of low temperature phase transitions in the cubic perovskite CH3NH3PbCI3 , 1998 .

[33]  Vytautas Getautis,et al.  Enhancing Thermal Stability and Lifetime of Solid-State Dye-Sensitized Solar Cells via Molecular Engineering of the Hole-Transporting Material Spiro-OMeTAD. , 2015, ACS applied materials & interfaces.

[34]  G. Boschloo,et al.  Carbon nanotube-based hybrid hole-transporting material and selective contact for high efficiency perovskite solar cells , 2016 .

[35]  F. Giustino,et al.  Toward Lead-Free Perovskite Solar Cells , 2016 .

[36]  T. Edvinsson,et al.  Room Temperature as a Goldilocks Environment for CH3NH3PbI3 Perovskite Solar Cells: The Importance of Temperature on Device Performance , 2016 .

[37]  R. Friend,et al.  Blue-Green Color Tunable Solution Processable Organolead Chloride–Bromide Mixed Halide Perovskites for Optoelectronic Applications , 2015, Nano letters.

[38]  K. Leo,et al.  Hole-transport material variation in fully vacuum deposited perovskite solar cells , 2014 .

[39]  K. Asai,et al.  Electronic structures of lead iodide based low-dimensional crystals , 2003 .

[40]  Qingfeng Dong,et al.  Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals , 2015, Science.

[41]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.

[42]  M. Nazeeruddin,et al.  High efficiency methylammonium lead triiodide perovskite solar cells: the relevance of non-stoichiometric precursors , 2015 .

[43]  Tomas Leijtens,et al.  Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells. , 2014, Nano letters.

[44]  Leone Spiccia,et al.  A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells. , 2014, Angewandte Chemie.

[45]  Licheng Sun,et al.  Recent Progress on Hole‐Transporting Materials for Emerging Organometal Halide Perovskite Solar Cells , 2015 .

[46]  Ruixia Yang,et al.  Surface optimization to eliminate hysteresis for record efficiency planar perovskite solar cells , 2016 .

[47]  Peng Gao,et al.  Silolothiophene-linked triphenylamines as stable hole transporting materials for high efficiency perovskite solar cells , 2015 .

[48]  Yixin Zhao,et al.  Solution Chemistry Engineering toward High-Efficiency Perovskite Solar Cells. , 2014, The journal of physical chemistry letters.

[49]  Yang Liu,et al.  Bulk crystal growth of hybrid perovskite material CH3NH3PbI3 , 2015 .

[50]  Shweta Agarwala,et al.  Perovskite Solar Cells: Beyond Methylammonium Lead Iodide. , 2015, The journal of physical chemistry letters.

[51]  Michael Grätzel,et al.  The Significance of Ion Conduction in a Hybrid Organic-Inorganic Lead-Iodide-Based Perovskite Photosensitizer. , 2015, Angewandte Chemie.

[52]  T. Bein,et al.  Stabilization of the Trigonal High-Temperature Phase of Formamidinium Lead Iodide. , 2015, The journal of physical chemistry letters.

[53]  J. Teuscher,et al.  Unreacted PbI2 as a Double-Edged Sword for Enhancing the Performance of Perovskite Solar Cells. , 2016, Journal of the American Chemical Society.

[54]  M. Grätzel,et al.  Additive-Free Transparent Triarylamine-Based Polymeric Hole-Transport Materials for Stable Perovskite Solar Cells. , 2016, ChemSusChem.

[55]  Aslihan Babayigit,et al.  Toxicity of organometal halide perovskite solar cells. , 2016, Nature materials.

[56]  S. Singh,et al.  Perovskite solar cells based on small molecule hole transporting materials , 2015 .

[57]  K. Gödel,et al.  Mesoporous SnO2 electron selective contact enables UV-stable perovskite solar cells , 2016 .

[58]  J. Bisquert,et al.  Electrical field profile and doping in planar lead halide perovskite solar cells , 2014 .

[59]  F. Giustino,et al.  Steric engineering of metal-halide perovskites with tunable optical band gaps , 2014, Nature Communications.

[60]  Anders Hagfeldt,et al.  Highly efficient and stable planar perovskite solar cells by solution-processed tin oxide , 2016 .

[61]  Young Chan Kim,et al.  Compositional engineering of perovskite materials for high-performance solar cells , 2015, Nature.

[62]  Qi Chen,et al.  Planar heterojunction perovskite solar cells via vapor-assisted solution process. , 2014, Journal of the American Chemical Society.

[63]  Tzung-Fang Guo,et al.  CH3NH3PbI3 Perovskite/Fullerene Planar‐Heterojunction Hybrid Solar Cells , 2013, Advanced materials.

[64]  M. Saidaminov,et al.  Retrograde solubility of formamidinium and methylammonium lead halide perovskites enabling rapid single crystal growth. , 2015, Chemical communications.

[65]  Eric T. Hoke,et al.  Hysteresis and transient behavior in current–voltage measurements of hybrid-perovskite absorber solar cells , 2014 .

[66]  Martin A. Green,et al.  Beneficial Effects of PbI2 Incorporated in Organo‐Lead Halide Perovskite Solar Cells , 2016 .

[67]  Anders Hagfeldt,et al.  Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance , 2016, Science.

[68]  Aron Walsh,et al.  Thermodynamic Origin of Photoinstability in the CH3NH3Pb(I1–xBrx)3 Hybrid Halide Perovskite Alloy , 2016, The journal of physical chemistry letters.

[69]  M. Johnston,et al.  Hybrid Perovskites for Photovoltaics: Charge-Carrier Recombination, Diffusion, and Radiative Efficiencies. , 2016, Accounts of chemical research.

[70]  Chunhui Huang,et al.  Hole‐Transporting Materials in Inverted Planar Perovskite Solar Cells , 2016 .

[71]  Young Chan Kim,et al.  o-Methoxy substituents in spiro-OMeTAD for efficient inorganic-organic hybrid perovskite solar cells. , 2014, Journal of the American Chemical Society.

[72]  Rui Xia,et al.  Credible evidence for the passivation effect of remnant PbI₂ in CH₃NHCH₃PbICH₃ films in improving the performance of perovskite solar cells. , 2016, Nanoscale.

[73]  Anders Hagfeldt,et al.  Migration of cations induces reversible performance losses over day/night cycling in perovskite solar cells , 2017 .

[74]  Jinsong Huang,et al.  Solvent Annealing of Perovskite‐Induced Crystal Growth for Photovoltaic‐Device Efficiency Enhancement , 2014, Advanced materials.

[75]  Albrecht Poglitsch,et al.  Dynamic disorder in methylammoniumtrihalogenoplumbates (II) observed by millimeter‐wave spectroscopy , 1987 .

[76]  Nam-Gyu Park,et al.  Parameters Affecting I-V Hysteresis of CH3NH3PbI3 Perovskite Solar Cells: Effects of Perovskite Crystal Size and Mesoporous TiO2 Layer. , 2014, The journal of physical chemistry letters.

[77]  Sergei Tretiak,et al.  High-efficiency solution-processed perovskite solar cells with millimeter-scale grains , 2015, Science.

[78]  Qingfeng Dong,et al.  Giant switchable photovoltaic effect in organometal trihalide perovskite devices. , 2015, Nature materials.

[79]  V. M. Goldschmidt,et al.  Die Gesetze der Krystallochemie , 1926, Naturwissenschaften.

[80]  Christophe Ballif,et al.  Organometallic Halide Perovskites: Sharp Optical Absorption Edge and Its Relation to Photovoltaic Performance. , 2014, The journal of physical chemistry letters.

[81]  Hiroshi Suga,et al.  Dielectric study of CH3NH3PbX3 (X = Cl, Br, I) , 1992 .

[82]  Yunlong Guo,et al.  Chemical Pathways Connecting Lead(II) Iodide and Perovskite via Polymeric Plumbate(II) Fiber. , 2015, Journal of the American Chemical Society.

[83]  N. Park,et al.  Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% , 2012, Scientific Reports.

[84]  Yaming Yu,et al.  NH2CH═NH2PbI3: An Alternative Organolead Iodide Perovskite Sensitizer for Mesoscopic Solar Cells , 2014 .

[85]  Richard L. Harlow,et al.  Preparation and characterization of layered lead halide compounds , 1991 .

[86]  Yun Wang,et al.  Formation Mechanism of Freestanding CH3NH3PbI3 Functional Crystals: In Situ Transformation vs Dissolution–Crystallization , 2014 .

[87]  S. Zakeeruddin,et al.  A vacuum flash–assisted solution process for high-efficiency large-area perovskite solar cells , 2016, Science.

[88]  H. Rensmo,et al.  Chemical and Electronic Structure Characterization of Lead Halide Perovskites and Stability Behavior under Different Exposures—A Photoelectron Spectroscopy Investigation , 2015 .

[89]  Yongbo Yuan,et al.  Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells , 2014, Nature Communications.

[90]  Ursula Rothlisberger,et al.  Entropic stabilization of mixed A-cation ABX3 metal halide perovskites for high performance perovskite solar cells , 2016 .

[91]  Anders Hagfeldt,et al.  Not All That Glitters Is Gold: Metal-Migration-Induced Degradation in Perovskite Solar Cells. , 2016, ACS nano.

[92]  Jae Hoon Yun,et al.  Effect of multi-armed triphenylamine-based hole transporting materials for high performance perovskite solar cells , 2016, Chemical science.

[93]  Peng Gao,et al.  Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. , 2012, Journal of the American Chemical Society.

[94]  M. S. Akhtar,et al.  Perovskite Solar Cells: Influence of Hole Transporting Materials on Power Conversion Efficiency. , 2016, ChemSusChem.

[95]  J. Luther,et al.  Substrate-controlled band positions in CH₃NH₃PbI₃ perovskite films. , 2014, Physical chemistry chemical physics : PCCP.

[96]  Sergei Tretiak,et al.  High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells , 2016, Nature.

[97]  Yang Yang,et al.  Interface engineering of highly efficient perovskite solar cells , 2014, Science.

[98]  Rebecca A. Belisle,et al.  Minimal Effect of the Hole-Transport Material Ionization Potential on the Open-Circuit Voltage of Perovskite Solar Cells , 2016 .

[99]  Zong-Liang Tseng,et al.  High efficiency stable inverted perovskite solar cells without current hysteresis , 2015 .

[100]  Anders Hagfeldt,et al.  Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5ee03874j Click here for additional data file. , 2016, Energy & environmental science.

[101]  M. Akabas,et al.  5-HT3 receptor ion size selectivity is a property of the transmembrane channel, not the cytoplasmic vestibule portals , 2011, The Journal of general physiology.

[102]  M. Fiebig,et al.  Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites , 2015, Nature Communications.

[103]  Philip Schulz,et al.  Interface energetics in organo-metal halide perovskite-based photovoltaic cells , 2014 .

[104]  Henk J. Bolink,et al.  Perovskite solar cells employing organic charge-transport layers , 2013, Nature Photonics.

[105]  Kidong Park,et al.  Reversible Halide Exchange Reaction of Organometal Trihalide Perovskite Colloidal Nanocrystals for Full-Range Band Gap Tuning. , 2015, Nano letters.

[106]  D. Mitzi,et al.  Inorganic Perovskites : Structural Versatility for Functional Materials Design , 2016 .

[107]  J. Jang,et al.  A generic method of visible light sensitization for perovskite-related layered oxides: Substitution effect of lead , 2006 .

[108]  P. Dhingra,et al.  Hole-Transporting Materials for Perovskite-Sensitized Solar Cells , 2016 .

[109]  Wei Zhang,et al.  Improving the Long-Term Stability of Perovskite Solar Cells with a Porous Al2O3 Buffer Layer. , 2015, The journal of physical chemistry letters.

[110]  Martin A. Green,et al.  Radiative efficiency of state‐of‐the‐art photovoltaic cells , 2012 .

[111]  Mohammad Khaja Nazeeruddin,et al.  Outdoor Performance and Stability under Elevated Temperatures and Long‐Term Light Soaking of Triple‐Layer Mesoporous Perovskite Photovoltaics , 2015 .

[112]  H. Miyamae,et al.  THE CRYSTAL STRUCTURE OF LEAD(II) IODIDE-DIMETHYLSULPHOXIDE(1/2), PbI2(dmso)2 , 1980 .

[113]  A. Köhler,et al.  Iodine Migration and its Effect on Hysteresis in Perovskite Solar Cells , 2016, Advanced materials.

[114]  B. Rech,et al.  Monolithic perovskite/silicon-heterojunction tandem solar cells processed at low temperature , 2016 .

[115]  G. Fleming,et al.  Exciton and Free Charge Dynamics of Methylammonium Lead Iodide Perovskites Are Different in the Tetragonal and Orthorhombic Phases , 2015 .

[116]  Jeroen van den Brink,et al.  The quantum nature of skyrmions and half-skyrmions in Cu2OSeO3 , 2014, Nature Communications.

[117]  Chengtian Lin,et al.  Growth of large CH3NH3PbX3 (X=I, Br) single crystals in solution , 2015 .

[118]  S. Zakeeruddin,et al.  Light Harvesting and Charge Recombination in CH3NH3PbI3 Perovskite Solar Cells Studied by Hole Transport Layer Thickness Variation. , 2015, ACS nano.

[119]  Robert P. H. Chang,et al.  Lead-free solid-state organic–inorganic halide perovskite solar cells , 2014, Nature Photonics.

[120]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[121]  Yan Yao,et al.  Critical kinetic control of non-stoichiometric intermediate phase transformation for efficient perovskite solar cells. , 2016, Nanoscale.

[122]  Peng Gao,et al.  Efficient luminescent solar cells based on tailored mixed-cation perovskites , 2016, Science Advances.

[123]  Aron Walsh,et al.  Ionic transport in hybrid lead iodide perovskite solar cells , 2015, Nature Communications.

[124]  Jian Shi,et al.  Discovering lead-free perovskite solar materials with a split-anion approach. , 2016, Nanoscale.

[125]  Anders Hagfeldt,et al.  Exploration of the compositional space for mixed lead halogen perovskites for high efficiency solar cells , 2016 .

[126]  Sang Il Seok,et al.  High-performance photovoltaic perovskite layers fabricated through intramolecular exchange , 2015, Science.

[127]  A. Walker,et al.  Influence of ionizing dopants on charge transport in organic semiconductors. , 2014, Physical chemistry chemical physics : PCCP.

[128]  Nam-Gyu Park,et al.  High‐Efficiency Perovskite Solar Cells Based on the Black Polymorph of HC(NH2)2PbI3 , 2014, Advanced materials.

[129]  T. Edvinsson,et al.  Effect of metal cation replacement on the electronic structure of metalorganic halide perovskites: Replacement of lead with alkaline-earth metals , 2016 .

[130]  Laura M Herz,et al.  High Charge Carrier Mobilities and Lifetimes in Organolead Trihalide Perovskites , 2013, Advanced materials.

[131]  Reinhard Schwödiauer,et al.  Flexible high power-per-weight perovskite solar cells with chromium oxide-metal contacts for improved stability in air. , 2015, Nature Materials.

[132]  M. Grätzel,et al.  Title: Long-Range Balanced Electron and Hole Transport Lengths in Organic-Inorganic CH3NH3PbI3 , 2017 .

[133]  Mohammad Khaja Nazeeruddin,et al.  Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency , 2014, Nature Communications.

[134]  Sang Il Seok,et al.  Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. , 2014, Nature materials.

[135]  A. Jen,et al.  Enhanced Efficiency and Stability of Inverted Perovskite Solar Cells Using Highly Crystalline SnO2 Nanocrystals as the Robust Electron‐Transporting Layer , 2016, Advanced materials.

[136]  A. Walsh,et al.  Cubic Perovskite Structure of Black Formamidinium Lead Iodide, α-[HC(NH2)2]PbI3, at 298 K , 2015, The Journal of Physical Chemistry Letters.

[137]  Peng Gao,et al.  Impedance spectroscopic analysis of lead iodide perovskite-sensitized solid-state solar cells. , 2014, ACS nano.

[138]  Bernd Rech,et al.  A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells , 2016, Science.

[139]  M. Grätzel,et al.  Optical analysis of CH3NH3SnxPb1–xI3 absorbers: a roadmap for perovskite-on-perovskite tandem solar cells† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6ta04840d Click here for additional data file. , 2016, Journal of materials chemistry. A.

[140]  C. Ballif,et al.  Efficient Monolithic Perovskite/Silicon Tandem Solar Cell with Cell Area >1 cm(2). , 2016, The journal of physical chemistry letters.

[141]  Nripan Mathews,et al.  Formamidinium-Containing Metal-Halide: An Alternative Material for Near-IR Absorption Perovskite Solar Cells , 2014 .

[142]  Peng Gao,et al.  A molecularly engineered hole-transporting material for efficient perovskite solar cells , 2016, Nature Energy.

[143]  Richard H. Friend,et al.  Photon recycling in lead iodide perovskite solar cells , 2016, Science.

[144]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[145]  Ullrich Steiner,et al.  Perovskite Solar Cell Stability in Humid Air: Partially Reversible Phase Transitions in the PbI2‐CH3NH3I‐H2O System , 2016 .

[146]  F. Giordano,et al.  Highly Efficient and Stable Perovskite Solar Cells based on a Low‐Cost Carbon Cloth , 2016 .

[147]  Michael Saliba,et al.  Inverted Current–Voltage Hysteresis in Mixed Perovskite Solar Cells: Polarization, Energy Barriers, and Defect Recombination , 2016 .

[148]  E. Sargent,et al.  Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals , 2015, Science.

[149]  Kai Zhu,et al.  Fabrication of Efficient Low-Bandgap Perovskite Solar Cells by Combining Formamidinium Tin Iodide with Methylammonium Lead Iodide. , 2016, Journal of the American Chemical Society.

[150]  X. Ren,et al.  Two‐Inch‐Sized Perovskite CH3NH3PbX3 (X = Cl, Br, I) Crystals: Growth and Characterization , 2015, Advanced materials.

[151]  Wei Chen,et al.  Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers , 2015, Science.

[152]  M. Grätzel,et al.  A New 1,3,4-Oxadiazole-Based Hole-Transport Material for Efficient CH3 NH3 PbBr3 Perovskite Solar Cells. , 2016, ChemSusChem.

[153]  J. Bisquert,et al.  Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation , 2015 .

[154]  Henk J. Bolink,et al.  Radiative efficiency of lead iodide based perovskite solar cells , 2014, Scientific Reports.

[155]  Rebecca A. Belisle,et al.  Perovskite-perovskite tandem photovoltaics with optimized band gaps , 2016, Science.

[156]  Sung Min Cho,et al.  Formamidinium and Cesium Hybridization for Photo‐ and Moisture‐Stable Perovskite Solar Cell , 2015 .

[157]  J. Teuscher,et al.  Lithium salts as "redox active" p-type dopants for organic semiconductors and their impact in solid-state dye-sensitized solar cells. , 2013, Physical chemistry chemical physics : PCCP.

[158]  T. Edvinsson,et al.  Determination of Thermal Expansion Coefficients and Locating the Temperature-Induced Phase Transition in Methylammonium Lead Perovskites Using X-ray Diffraction. , 2015, Inorganic chemistry.

[159]  S. Meloni,et al.  Ionic polarization-induced current–voltage hysteresis in CH3NH3PbX3 perovskite solar cells , 2016, Nature Communications.

[160]  Nam-Gyu Park,et al.  Lewis Acid-Base Adduct Approach for High Efficiency Perovskite Solar Cells. , 2016, Accounts of chemical research.

[161]  D. Nordlund,et al.  Strontium Insertion in Methylammonium Lead Iodide: Long Charge Carrier Lifetime and High Fill‐Factor Solar Cells , 2016, Advanced materials.

[162]  Tonio Buonassisi,et al.  Identifying defect-tolerant semiconductors with high minority-carrier lifetimes: beyond hybrid lead halide perovskites , 2015, 1504.02144.

[163]  Anders Hagfeldt,et al.  Unbroken Perovskite: Interplay of Morphology, Electro‐optical Properties, and Ionic Movement , 2016, Advanced materials.

[164]  Anders Hagfeldt,et al.  Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21% , 2016, Nature Energy.

[165]  M. Grätzel,et al.  A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability , 2014, Science.

[166]  Rachel C. Kurchin,et al.  Methylammonium Bismuth Iodide as a Lead-Free, Stable Hybrid Organic-Inorganic Solar Absorber. , 2016, Chemistry.

[167]  Laura M. Herz,et al.  Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.

[168]  Nam-Gyu Park,et al.  6.5% efficient perovskite quantum-dot-sensitized solar cell. , 2011, Nanoscale.

[169]  Federico Bella,et al.  Improving efficiency and stability of perovskite solar cells with photocurable fluoropolymers , 2016, Science.

[170]  Nripan Mathews,et al.  The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells , 2014 .

[171]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[172]  M. Saidaminov,et al.  Making and Breaking of Lead Halide Perovskites. , 2016, Accounts of chemical research.

[173]  Mohammad Khaja Nazeeruddin,et al.  Understanding the rate-dependent J–V hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: the role of a compensated electric field , 2015 .