Bayesian inference for a flexible class of bivariate beta distributions

ABSTRACT Several bivariate beta distributions have been proposed in the literature. In particular, Olkin and Liu [A bivariate beta distribution. Statist Probab Lett. 2003;62(4):407–412] proposed a 3 parameter bivariate beta model which Arnold and Ng [Flexible bivariate beta distributions. J Multivariate Anal. 2011;102(8):1194–1202] extend to 5 and 8 parameter models. The 3 parameter model allows for only positive correlation, while the latter models can accommodate both positive and negative correlation. However, these come at the expense of a density that is mathematically intractable. The focus of this research is on Bayesian estimation for the 5 and 8 parameter models. Since the likelihood does not exist in closed form, we apply approximate Bayesian computation, a likelihood free approach. Simulation studies have been carried out for the 5 and 8 parameter cases under various priors and tolerance levels. We apply the 5 parameter model to a real data set by allowing the model to serve as a prior to correlated proportions of a bivariate beta binomial model. Results and comparisons are then discussed.

[1]  M. C. Jones Multivariate t and beta distributions associated with the multivariate F distribution , 2002 .

[2]  David Welch,et al.  Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems , 2009, Journal of The Royal Society Interface.

[3]  Arjun K. Gupta,et al.  On three and five parameter bivariate beta distributions , 1985 .

[4]  N. Balakrishnan,et al.  Continuous Bivariate Distributions , 2009 .

[5]  M. Feldman,et al.  Population growth of human Y chromosomes: a study of Y chromosome microsatellites. , 1999, Molecular biology and evolution.

[6]  Andrew Gelman,et al.  Handbook of Markov Chain Monte Carlo , 2011 .

[7]  Daniel Wegmann,et al.  Bayesian Computation and Model Selection Without Likelihoods , 2010, Genetics.

[8]  Tim Hesterberg,et al.  Monte Carlo Strategies in Scientific Computing , 2002, Technometrics.

[9]  D. Balding,et al.  Approximate Bayesian computation in population genetics. , 2002, Genetics.

[10]  Olivier François,et al.  Non-linear regression models for Approximate Bayesian Computation , 2008, Stat. Comput..

[11]  Barry C. Arnold,et al.  Flexible bivariate beta distributions , 2011, J. Multivar. Anal..

[12]  Bruce G. S. Hardie,et al.  Bacon With Your Eggs? Applications of a New Bivariate Beta-Binomial Distribution , 2005 .

[13]  Gareth W. Peters,et al.  On sequential Monte Carlo, partial rejection control and approximate Bayesian computation , 2008, Statistics and Computing.

[14]  Mei-Ling Ting Lee,et al.  Properties and applications of the sarmanov family of bivariate distributions , 1996 .

[15]  P. Donnelly,et al.  Inferring coalescence times from DNA sequence data. , 1997, Genetics.

[16]  Daya K. Nagar,et al.  Non-central bivariate beta distribution , 2011 .

[17]  Ingram Olkin,et al.  A bivariate beta distribution , 2003 .

[18]  W. R. Schucany,et al.  Correlation structure in Farlie-Gumbel-Morgenstern distributions , 1978 .

[19]  Cliburn Chan,et al.  Understanding GPU Programming for Statistical Computation: Studies in Massively Parallel Massive Mixtures , 2010, Journal of computational and graphical statistics : a joint publication of American Statistical Association, Institute of Mathematical Statistics, Interface Foundation of North America.

[20]  Ingram Olkin,et al.  Constructions for a bivariate beta distribution , 2014, 1406.5881.

[21]  Mark M. Tanaka,et al.  Sequential Monte Carlo without likelihoods , 2007, Proceedings of the National Academy of Sciences.

[22]  Samuel Kotz,et al.  Some bivariate beta distributions , 2005 .

[23]  O. Cappé,et al.  Population Monte Carlo , 2004 .

[24]  Paul Marjoram,et al.  Markov chain Monte Carlo without likelihoods , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[25]  D. Rubin Bayesianly Justifiable and Relevant Frequency Calculations for the Applied Statistician , 1984 .