F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig Fast and Accurate Tensor Approximation of Multivariate Convolution with Linear Scaling in Dimension Fast and Accurate Tensor Approximation of Multivariate Convolution with Linear Scaling in Dimension

In the present paper we present the tensor-product approximation of a multidimensional convolution transform discretized via a collocation-projection scheme on uniform or composite refined grids. Examples of convolving kernels are provided by the classical Newton, Slater (exponential) and Yukawa potentials, 1/@[email protected]?, e^-^@l^@?^x^@? and e^-^@l^@?^x^@?/@[email protected]? with [email protected]?R^d. For piecewise constant elements on the uniform grid of size n^d, we prove quadratic convergence O(h^2) in the mesh parameter h=1/n, and then justify the Richardson extrapolation method on a sequence of grids that improves the order of approximation up to O(h^3). A fast algorithm of complexity O(dR"1R"2nlogn) is described for tensor-product convolution on uniform/composite grids of size n^d, where R"1,R"2 are tensor ranks of convolving functions. We also present the tensor-product convolution scheme in the two-level Tucker canonical format and discuss the consequent rank reduction strategy. Finally, we give numerical illustrations confirming: (a) the approximation theory for convolution schemes of order O(h^2) and O(h^3); (b) linear-logarithmic scaling of 1D discrete convolution on composite grids; (c) linear-logarithmic scaling in n of our tensor-product convolution method on an nxnxn grid in the range [email protected]?16384.

[1]  Dražen Adamović A family of regular vertex operator algebras with two generators , 2007 .

[2]  Boris N. Khoromskij,et al.  Tensor decomposition in electronic structure calculations on 3D Cartesian grids , 2009, J. Comput. Phys..

[3]  Ivan P. Gavrilyuk,et al.  Hierarchical Tensor-Product Approximation to the Inverse and Related Operators for High-Dimensional Elliptic Problems , 2004, Computing.

[4]  B. Khoromskij,et al.  Low rank Tucker-type tensor approximation to classical potentials , 2007 .

[5]  Gregory Beylkin,et al.  Multiresolution quantum chemistry: basic theory and initial applications. , 2004, The Journal of chemical physics.

[6]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[7]  Joos Vandewalle,et al.  On the Best Rank-1 and Rank-(R1 , R2, ... , RN) Approximation of Higher-Order Tensors , 2000, SIAM J. Matrix Anal. Appl..

[8]  B. Khoromskij Structured Rank-(r1, . . . , rd) Decomposition of Function-related Tensors in R_D , 2006 .

[9]  L. Tucker,et al.  Some mathematical notes on three-mode factor analysis , 1966, Psychometrika.

[10]  Pierre Comon,et al.  Tensor Decompositions, State of the Art and Applications , 2002 .

[11]  Boris N. Khoromskij,et al.  Multigrid Accelerated Tensor Approximation of Function Related Multidimensional Arrays , 2009, SIAM J. Sci. Comput..

[12]  Eugene E. Tyrtyshnikov,et al.  Tucker Dimensionality Reduction of Three-Dimensional Arrays in Linear Time , 2008, SIAM J. Matrix Anal. Appl..

[13]  Martin J. Mohlenkamp,et al.  Preliminary results on approximating a wavefunction as an unconstrained sum of Slater determinants , 2007 .

[14]  Martin J. Mohlenkamp,et al.  Numerical operator calculus in higher dimensions , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[15]  Boris N. Khoromskij,et al.  Verification of the cross 3D algorithm on quantum chemistry data , 2008 .

[16]  Boris N. Khoromskij,et al.  Low-rank Kronecker-product Approximation to Multi-dimensional Nonlocal Operators. Part I. Separable Approximation of Multi-variate Functions , 2005, Computing.

[17]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[18]  Eugene E. Tyrtyshnikov,et al.  Linear algebra for tensor problems , 2009, Computing.

[19]  Joos Vandewalle,et al.  A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..

[20]  Boris N. Khoromskij,et al.  Hierarchical Kronecker tensor-product approximations , 2005, J. Num. Math..

[21]  Wolfgang Hackbusch Fast and exact projected convolution for non-equidistant grids , 2007, Computing.

[22]  Boris N. Khoromskij On tensor approximation of Green iterations for Kohn-Sham equations , 2008 .

[23]  Gene H. Golub,et al.  Rank-One Approximation to High Order Tensors , 2001, SIAM J. Matrix Anal. Appl..