A temporal red-green opponent mechanism

A mechanistic model is presented that describes the temporal behaviour of a red-green colour opponent channel such as has been investigated for the macaque monkey. The model incorporates luminanceand chromaticity-adaptation mechanisms. Receptive field properties such as retardation and attenuation of the surround signals with respect to the center signals of the colour opponent channel are also included. The model predicts temporal psychophysical chromaticity thresholds and temporal electrophysiological red-green colour opponent ganglion cell behaviour with a reasonable degree of success.

[1]  C R Ingling,et al.  Simple-opponent receptive fields are asymmetrical: G-cone centers predominate. , 1983, Journal of the Optical Society of America.

[2]  C. R. Ingling,et al.  The spatiotemporal properties of the r-g X-cell channel , 1985, Vision Research.

[3]  CHARLES E. BENHAM,et al.  The Artificial Spectrum Top , 1894, Nature.

[4]  Gunther Wyszecki,et al.  Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd Edition , 2000 .

[5]  E. Zrenner,et al.  Characteristics of the blue sensitive cone mechanism in primate retinal ganglion cells , 1981, Vision Research.

[6]  J J Koenderink,et al.  Sensitivity to spatiotemporal combined luminance and chromaticity contrast. , 1981, Journal of the Optical Society of America.

[7]  H DE LANGE DZN,et al.  Research into the dynamic nature of the human fovea-cortex systems with intermittent and modulated light. II. Phase shift in brithtness and delay in color perception. , 1958, Journal of the Optical Society of America.

[8]  Priv.-Doz. Dr. med. habil. Eberhart Zrenner Neurophysiological Aspects of Color Vision in Primates , 1983, Studies of Brain Function.

[9]  H. J. Leebeek,et al.  PHASE SHIFT OF SINUSOIDALLY ALTERNATING COLORED STIMULI. , 1964, Journal of the Optical Society of America.

[10]  H. D. L. Dzn Research into the dynamic nature of the human fovea-cortex systems with intermittent and modulated light. I. Attenuation characteristics with white and colored light. , 1958 .

[11]  J. J. Koenderink,et al.  Foveal information processing at photopic luminances , 1971, Kybernetik.

[12]  P Gouras,et al.  Enchancement of luminance flicker by color-opponent mechanisms. , 1979, Science.

[13]  M. A. Bouman,et al.  Opponent color coding: A mechanistic model and a new metric for color space , 1972, Kybernetik.

[14]  J. J. Vos Colorimetric and photometric properties of a 2° fundamental observer , 1978 .

[15]  I Abramov,et al.  Single cell analysis of wavelength discrimination at the lateral geniculate nucleus in the macaque. , 1967, Journal of neurophysiology.

[16]  J. Koenderink,et al.  Spatial and temporal discrimination ellipsoids in color space. , 1983, Journal of the Optical Society of America.

[17]  R. M. Boynton Human color vision , 1979 .

[18]  CHARLES E. BENHAM,et al.  The Artificial Spectrum Top , 1895, Nature.