A semi-implicit level set method for multiphase flows and fluid-structure interaction problems

In this paper we present a novel semi-implicit time-discretization of the level set method introduced in 8 for fluid-structure interaction problems. The idea stems from a linear stability analysis derived on a simplified one-dimensional problem. The semi-implicit scheme relies on a simple filter operating as a pre-processing on the level set function. It applies to multiphase flows driven by surface tension as well as to fluid-structure interaction problems. The semi-implicit scheme avoids the stability constraints that explicit scheme need to satisfy and reduces significantly the computational cost. It is validated through comparisons with the original explicit scheme and refinement studies on two-dimensional benchmarks.

[1]  C. Peskin Numerical analysis of blood flow in the heart , 1977 .

[2]  Anita Mayo,et al.  An implicit numerical method for fluid dynamics problems with immersed elastic boundaries , 1993 .

[3]  C. Peskin The immersed boundary method , 2002, Acta Numerica.

[4]  Ronald Fedkiw,et al.  Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.

[5]  Emmanuel Maitre,et al.  Eulerian model of immersed elastic surfaces with full membrane elasticity , 2014 .

[6]  Alfio Quarteroni,et al.  Mathematical modelling of active contraction in isolated cardiomyocytes. , 2014, Mathematical medicine and biology : a journal of the IMA.

[7]  Marina Vidrascu,et al.  Explicit Robin–Neumann schemes for the coupling of incompressible fluids with thin-walled structures , 2013 .

[8]  Mark Sussman,et al.  A Stable and Efficient Method for Treating Surface Tension in Incompressible Two-Phase Flow , 2009, SIAM J. Sci. Comput..

[9]  B. Wetton,et al.  Analysis of Stiffness in the Immersed Boundary Method and Implications for Time-Stepping Schemes , 1999 .

[10]  Stéphane Popinet,et al.  An accurate adaptive solver for surface-tension-driven interfacial flows , 2009, J. Comput. Phys..

[11]  L. Heltai,et al.  Mathematical Models and Methods in Applied Sciences Vol. 17, No. 10 (17) 1479–1505 c ○ World Scientific Publishing Company NUMERICAL STABILITY OF THE FINITE ELEMENT IMMERSED BOUNDARY METHOD , 2005 .

[12]  G. Cottet,et al.  EULERIAN FORMULATION AND LEVEL SET MODELS FOR INCOMPRESSIBLE FLUID-STRUCTURE INTERACTION , 2008 .

[13]  J. Brackbill,et al.  A continuum method for modeling surface tension , 1992 .

[14]  Emmanuel Maitre,et al.  Applications of level set methods in computational biophysics , 2009, Math. Comput. Model..

[15]  John M. Stockie,et al.  Stability Analysis for the Immersed Fiber Problem , 1995, SIAM J. Appl. Math..

[16]  Charles S. Peskin,et al.  Stability and Instability in the Computation of Flows with Moving Immersed Boundaries: A Comparison of Three Methods , 1992, SIAM J. Sci. Comput..

[17]  S. Hysing,et al.  A new implicit surface tension implementation for interfacial flows , 2006 .

[18]  Miguel A. Fernández,et al.  A projection semi‐implicit scheme for the coupling of an elastic structure with an incompressible fluid , 2007 .

[19]  Peter Smereka,et al.  Semi-Implicit Level Set Methods for Curvature and Surface Diffusion Motion , 2003, J. Sci. Comput..

[20]  S. Osher,et al.  A Level Set Formulation of Eulerian Interface Capturing Methods for Incompressible Fluid Flows , 1996 .

[21]  S. Osher,et al.  A level set approach for computing solutions to incompressible two-phase flow , 1994 .

[22]  Randall J. LeVeque,et al.  An Immersed Interface Method for Incompressible Navier-Stokes Equations , 2003, SIAM J. Sci. Comput..

[23]  J. Thomas Beale,et al.  Locally corrected semi-Lagrangian methods for Stokes flow with moving elastic interfaces , 2008, J. Comput. Phys..

[24]  Marcus Herrmann,et al.  A balanced force refined level set grid method for two-phase flows on unstructured flow solver grids , 2008, J. Comput. Phys..

[25]  Paul Vigneaux,et al.  Level-Set method and stability condition for curvature-driven flows , 2007 .

[26]  G. Cottet,et al.  Linear stability analysis of a Level Set model of immersed elastic membrane , 2009 .

[27]  Paul Vigneaux,et al.  On stability condition for bifluid flows with surface tension: Application to microfluidics , 2008, J. Comput. Phys..

[28]  Zhilin Li,et al.  A level-set method for interfacial flows with surfactant , 2006, J. Comput. Phys..

[29]  Raducanu Razvan,et al.  MATHEMATICAL MODELS and METHODS in APPLIED SCIENCES , 2012 .

[30]  G. Cottet,et al.  A LEVEL SET METHOD FOR FLUID-STRUCTURE INTERACTIONS WITH IMMERSED SURFACES , 2006 .

[31]  G. Cottet,et al.  A level-set formulation of immersed boundary methods for fluid–structure interaction problems , 2004 .

[32]  D. Bresch,et al.  Computational Modeling of Solid Tumor Growth: The Avascular Stage , 2010, SIAM J. Sci. Comput..