Current Status and New Developments in Ion Therapy

Background:Worldwide, encouraging clinical results of ion radiotherapy led to planning and construction of several new treatment facilities.Material and Methods:The main technical and biological aspects of ion therapy are reviewed. The current status and future developments are discussed.Results:The use of ions in radiotherapy results in highly conformal dose distributions. The degree of conformality is higher for active than for passive beam delivery techniques. Applying ion therapy, uncertainties in the range and the biologically effective dose have to be considered. For heavy ions, the clinical value of the increased biological efficiency has to be investigated.Conclusion:Although the principal methods for clinical application of ion therapy are available, the development must be continued to explore its full potential.Hintergrund:Vielversprechende klinische Ergebnisse der Ionentherapie führten weltweit zu Planung und Aufbau zahlreicher neuer Therapieeinrichtungen.Material und Methodik:Die wichtigsten technischen und biologischen Aspekte der Ionentherapie werden zusammengefasst. Der momentane Status und künftige Entwicklungen werden diskutiert.Ergebnisse:Die Anwendung von Ionen führt zu hochkonformen Dosisverteilungen (Abbildungen 2 und 3). Die Konformität ist für aktive Feldformungstechniken größer als für passive (Abbildung 1). Die Anwendung von Ionen in der Strahlentherapie muss Unsicherheiten in der Reichweite und der biologisch effektiven Dosis berücksichtigen. Für schwere Ionen muss die klinische Wertigkeit der erhöhten biologischen Effektivität untersucht werden.Schlussfolgerung:Obwohl die wesentlichen Methoden für den klinischen Einsatz der Ionentherapie vorhanden sind, muss die Entwicklung fortgeführt werden, um ihr Potential voll auszuschöpfen.

[1]  M. Scholz,et al.  Computation of cell survival in heavy ion beams for therapy , 1997, Radiation and environmental biophysics.

[2]  Uwe Oelfke,et al.  Inverse planning of intensity modulated proton therapy. , 2004, Zeitschrift fur medizinische Physik.

[3]  H. Suit,et al.  The Gray Lecture 2001: coming technical advances in radiation oncology. , 2002, International journal of radiation oncology, biology, physics.

[4]  Michael Scholz,et al.  Effectiveness of carbon ion radiotherapy in the treatment of skull-base chordomas. , 2007, International journal of radiation oncology, biology, physics.

[5]  Oliver Jäkel,et al.  Radiation therapy with charged particles. , 2006, Seminars in radiation oncology.

[6]  Riwa Kishimoto,et al.  Overview of clinical experiences on carbon ion radiotherapy at NIRS. , 2004, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[7]  O Jäkel,et al.  The Heidelberg Ion Therapy Center. , 2004, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[8]  T. Haberer,et al.  Die Konzeption der Heidelberger Ionentherapieanlage HICAT , 2004 .

[9]  A. Rosenberg,et al.  Proton radiation therapy for chordomas and chondrosarcomas of the skull base. , 1999, Journal of neurosurgery.

[10]  M Scholz,et al.  Treatment planning for heavy-ion radiotherapy: calculation and optimization of biologically effective dose. , 2000, Physics in medicine and biology.

[11]  S Minohara,et al.  Respiratory gated irradiation system for heavy-ion radiotherapy. , 2000, International journal of radiation oncology, biology, physics.

[12]  Nobuyuki Kanematsu,et al.  A CT calibration method based on the polybinary tissue model for radiotherapy treatment planning. , 2003, Physics in medicine and biology.

[13]  A. Haase,et al.  Impact of Hypoxia and the Metabolic Microenvironment on Radiotherapy of Solid Tumors , 2004, Strahlentherapie und Onkologie.

[14]  Shinichi Minohara,et al.  Estimating uncertainties of the geometrical range of particle radiotherapy during respiration. , 2003, International journal of radiation oncology, biology, physics.

[15]  J. Castro,et al.  Results of heavy ion radiotherapy , 1995, Radiation and environmental biophysics.

[16]  D. Schardt,et al.  Magnetic scanning system for heavy ion therapy , 1993 .

[17]  J. Debus,et al.  Carbon ion radiation therapy for chordomas and low grade chondrosarcomas--current status of the clinical trials at GSI. , 2004, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[18]  G. Goitein,et al.  ["Spot-scanning" proton therapy for rhabdomyosarcomas of early childhood. First experiences at PSI]. , 2006, Strahlentherapie und Onkologie : Organ der Deutschen Rontgengesellschaft ... [et al].

[19]  Oliver Jäkel,et al.  The influence of metal artefacts on the range of ion beams , 2007, Physics in medicine and biology.

[20]  D. Georg,et al.  Comparative treatment planning on localized prostate carcinoma conformal photon- versus proton-based radiotherapy. , 2005, Strahlentherapie und Onkologie : Organ der Deutschen Rontgengesellschaft ... [et al].

[21]  E. Pedroni,et al.  Initial experience of using an active beam delivery technique at PSI , 1999, Strahlentherapie und Onkologie.

[22]  Hans Blattmann,et al.  Tumor therapy with heavy charged particles , 2008 .

[23]  Thomas Haberer,et al.  3D online compensation of target motion with scanned particle beam. , 2004, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[24]  P. Gutin,et al.  Experience in charged particle irradiation of tumors of the skull base: 1977-1992. , 1994, International journal of radiation oncology, biology, physics.

[25]  Stanley J. Rosenthal,et al.  Moving targets: detection and tracking of internal organ motion for treatment planning and patient set-up. , 2004, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[26]  O Jäkel,et al.  Heavy Ion Therapy: Status and Perspectives , 2003, Technology in cancer research & treatment.

[27]  H. Blattmann Beam delivery systems for charged particles , 1992, Radiation and environmental biophysics.

[28]  Harald Paganetti,et al.  Relative biological effectiveness (RBE) values for proton beam therapy. , 2002, International journal of radiation oncology, biology, physics.

[29]  E. Rietzel,et al.  Online compensation for target motion with scanned particle beams: simulation environment. , 2004, Physics in medicine and biology.

[30]  E Pedroni,et al.  Experimental characterization and physical modelling of the dose distribution of scanned proton pencil beams , 2005, Physics in medicine and biology.

[31]  Alessandra Bolsi,et al.  Results of spot-scanning proton radiation therapy for chordoma and chondrosarcoma of the skull base: the Paul Scherrer Institut experience. , 2005, International journal of radiation oncology, biology, physics.

[32]  H Paganetti,et al.  Significance and Implementation of RBE Variations in Proton Beam Therapy , 2003, Technology in cancer research & treatment.

[33]  Anders Brahme,et al.  Recent advances in light ion radiation therapy. , 2004, International Journal of Radiation Oncology, Biology, Physics.

[34]  J. Debus,et al.  Therapy strategies for locally advanced adenoid cystic carcinomas using modern radiation therapy techniques , 2005, Cancer.

[35]  O Jäkel,et al.  Treatment planning for heavy ion radiotherapy: clinical implementation and application. , 2001, Physics in medicine and biology.

[36]  O. Jäkel Ranges of ions in metals for use in particle treatment planning , 2006, Physics in Medicine and Biology.

[37]  T. Hashimoto,et al.  Proton Therapy for Head and Neck Malignancies at Tsukuba , 2004, Strahlentherapie und Onkologie.

[38]  J. Debus,et al.  Radiation tolerance of the rat spinal cord after 6 and 18 fractions of photons and carbon ions: experimental results and clinical implications. , 2006, International journal of radiation oncology, biology, physics.

[39]  T. Haberer,et al.  [Conception of heavy ion beam therapy at Heidelberg University (HICAT)]. , 2004, Zeitschrift fur medizinische Physik.

[40]  C. Haie-meder,et al.  Radiation Therapy for Chordoma and Chondrosarcoma of the Skull Base and the Cervical Spine , 2003, Strahlentherapie und Onkologie.

[41]  M Scholz,et al.  Rapid calculation of biological effects in ion radiotherapy , 2006, Physics in medicine and biology.

[42]  O Jäkel,et al.  Treatment planning for carbon ion radiotherapy in Germany: review of clinical trials and treatment planning studies. , 2004, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[43]  J. Munzenrider,et al.  Proton therapy for tumors of the skull base , 1999, Strahlentherapie und Onkologie.

[44]  J. Debus,et al.  Carbon ion radiotherapy of skull base chondrosarcomas. , 2007, International journal of radiation oncology, biology, physics.

[45]  E. Pedroni,et al.  The calibration of CT Hounsfield units for radiotherapy treatment planning. , 1996, Physics in medicine and biology.

[46]  S Minohara,et al.  Biophysical characteristics of HIMAC clinical irradiation system for heavy-ion radiation therapy. , 1999, International journal of radiation oncology, biology, physics.

[47]  Branislav Jeremic,et al.  Positron Emission Tomography for Radiation Treatment Planning , 2005, Strahlentherapie und Onkologie.

[48]  O Jäkel,et al.  Treatment planning for heavy-ion radiotherapy: physical beam model and dose optimization. , 2000, Physics in medicine and biology.

[49]  E. Pedroni,et al.  Intensity modulated proton therapy: a clinical example. , 2001, Medical physics.

[50]  T. Hashimoto,et al.  Proton Beam Therapy for Hepatocellular Carcinoma Patients with Severe Cirrhosis , 2006, Strahlentherapie und Onkologie.

[51]  O Jäkel,et al.  Relation between carbon ion ranges and x-ray CT numbers. , 2001, Medical physics.

[52]  Ugo Amaldi CNAO--The Italian Centre for Light-Ion Therapy. , 2004, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[53]  Tatsuaki Kanai,et al.  Hypofractionated radiotherapy with carbon ion beams for prostate cancer. , 2005, International journal of radiation oncology, biology, physics.

[54]  O. Jäkel,et al.  Influence of iodine contrast agent on the range of ion beams for radiotherapy. , 2004, Medical physics.

[55]  T Kanai,et al.  Irradiation of mixed beam and design of spread-out Bragg peak for heavy-ion radiotherapy. , 1997, Radiation research.

[56]  E. Pedroni,et al.  The 200-MeV proton therapy project at the Paul Scherrer Institute: conceptual design and practical realization. , 1995, Medical physics.

[57]  T. Renner,et al.  Clinical gain from improved beam delivery systems , 1992, Radiation and environmental biophysics.