Electrochemical behavior of biphenyl as polymerizable additive for overcharge protection of lithium ion batteries

[1]  Subbarao Surampudi,et al.  Analysis of Redox Additive‐Based Overcharge Protection for Rechargeable Lithium Batteries , 1991 .

[2]  J. Tarascon,et al.  Rechargeable Li1 + x Mn2 O 4 / Carbon Cells with a New Electrolyte Composition Potentiostatic Studies and Application to Practical Cells , 1993 .

[3]  J. Dahn,et al.  Thermal stability of LixCoO2, LixNiO2 and λ-MnO2 and consequences for the safety of Li-ion cells , 1994 .

[4]  T. Richardson,et al.  Overcharge Protection for Rechargeable Lithium Polymer Electrolyte Batteries , 1996 .

[5]  H. X. Yang,et al.  A study of LiMn2O4 synthesized from Li2CO3 and MnCO3 , 1998 .

[6]  M. Broussely,et al.  On safety of lithium-ion cells , 1999 .

[7]  Katsuhito Takei,et al.  Gas generation mechanism due to electrolyte decomposition in commercial lithium-ion cell , 1999 .

[8]  Momoe Adachi,et al.  Aromatic Compounds as Redox Shuttle Additives for 4 V Class Secondary Lithium Batteries , 1999 .

[9]  E. Yasukawa,et al.  Nonflammable Trimethyl Phosphate Solvent-Containing Electrolytes for Lithium-Ion Batteries: I. Fundamental Properties , 2001 .

[10]  E. Yasukawa,et al.  Nonflammable Trimethyl Phosphate Solvent-Containing Electrolytes for Lithium-Ion Batteries: II. The Use of an Amorphous Carbon Anode , 2001 .

[11]  D. D. MacNeil,et al.  The Reactions of Li0.5CoO2 with Nonaqueous Solvents at Elevated Temperatures , 2002 .

[12]  Kang Xu,et al.  Tris(2,2,2-trifluoroethyl) phosphite as a co-solvent for nonflammable electrolytes in Li-ion batteries , 2003 .