Ordinal approximation in matching and social choice
暂无分享,去创建一个
[1] J. Harsanyi. Cardinal Welfare, Individualistic Ethics, and Interpersonal Comparisons of Utility , 1955 .
[2] Vincent Conitzer. Eliciting single-peaked preferences using comparison queries , 2007, AAMAS '07.
[3] Elliot Anshelevich,et al. Approximating Optimal Social Choice under Metric Preferences , 2015, AAAI.
[4] James M. Enelow,et al. The Spatial Theory of Voting: An Introduction , 1984 .
[5] Craig Boutilier,et al. Optimal social choice functions: A utilitarian view , 2015, Artif. Intell..
[6] Elliot Anshelevich,et al. Blind, Greedy, and Random: Ordinal Approximation Algorithms for Graph Problems , 2015, ArXiv.
[7] Elliot Anshelevich,et al. Randomized Social Choice Functions under Metric Preferences , 2015, IJCAI.
[8] Elliot Anshelevich,et al. Blind, Greedy, and Random: Algorithms for Matching and Clustering Using Only Ordinal Information , 2016, AAAI.
[9] Craig Boutilier,et al. Incomplete Information and Communication in Voting , 2016, Handbook of Computational Social Choice.
[10] B. Grofman,et al. A Unified Theory of Voting: Directional and Proximity Spatial Models , 1999 .
[11] Jie Zhang,et al. Social Welfare in One-Sided Matchings: Random Priority and Beyond , 2014, SAGT.
[12] Ariel D. Procaccia,et al. The Distortion of Cardinal Preferences in Voting , 2006, CIA.
[13] Piotr Faliszewski,et al. Recognizing 1-Euclidean Preferences: An Alternative Approach , 2014, SAGT.
[14] Ariel D. Procaccia,et al. Subset Selection via Implicit Utilitarian Voting , 2016, IJCAI.
[15] Amos Fiat,et al. On Voting and Facility Location , 2015, EC.
[16] Moshe Tennenholtz,et al. Approximate mechanism design without money , 2009, EC '09.