Bifurcations of tori and phase locking in a dissipative system of differential equations

Abstract In a system of ordinary differential equations, obtained through a seven-mode truncation of the plane incompressible Navier-Stokes equations, a two-dimensional torus undergoes first two period-doubling bifurcations and then a transition to a strange attractor. This strange attractor, of Liapunov dimension larger than three in a wide parameter interval, is characterized by a power spectrum which retains the two fundamental frequencies of the original torus superimposed on a broad, jagged background. As the Liapunov dimension goes down towards two, an interesting phenomenon of phase locking occurs, which gives rise to an alternation of chaotic and periodic behavior.

[1]  J. Yorke,et al.  Chaotic behavior of multidimensional difference equations , 1979 .

[2]  E. Lorenz NOISY PERIODICITY AND REVERSE BIFURCATION * , 1980 .

[3]  Truncated Navier-Stokes equations on a two-dimensional torus , 1983 .

[4]  Mitchell J. Feigenbaum,et al.  The transition to aperiodic behavior in turbulent systems , 1980 .

[5]  J. Yorke,et al.  A transition from hopf bifurcation to chaos: Computer experiments with maps on R2 , 1978 .

[6]  J. D. Farmer,et al.  A PHASE SPACE ANALYSIS OF BAROCLINIC FLOW , 1982 .

[7]  C. Bolley,et al.  Solutions numériques de problèmes de bifurcation , 1980 .

[8]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[9]  J. Sethna,et al.  Universal Transition from Quasiperiodicity to Chaos in Dissipative Systems , 1982 .

[10]  James H. Curry,et al.  A generalized Lorenz system , 1978 .

[11]  Hazime Mori,et al.  Fractal Dimensions of Chaotic Flows of Autonomous Dissipative Systems , 1980 .

[12]  Y. Pomeau,et al.  Intermittent transition to turbulence in dissipative dynamical systems , 1980 .

[13]  S. Shenker,et al.  Quasiperiodicity in dissipative systems: A renormalization group analysis , 1983 .

[14]  J. Doyne Farmer,et al.  Spectral Broadening of Period-Doubling Bifurcation Sequences , 1981 .

[15]  F. Takens,et al.  On the nature of turbulence , 1971 .

[16]  G. Benettin,et al.  Lyapunov Characteristic Exponents for smooth dynamical systems and for hamiltonian systems; a method for computing all of them. Part 1: Theory , 1980 .

[17]  M. Feigenbaum Quantitative universality for a class of nonlinear transformations , 1978 .

[18]  G. Benettin,et al.  Lyapunov Characteristic Exponents for smooth dynamical systems and for hamiltonian systems; A method for computing all of them. Part 2: Numerical application , 1980 .

[19]  C. K. Yuen,et al.  Digital spectral analysis , 1979 .

[20]  J. Gollub,et al.  Many routes to turbulent convection , 1980, Journal of Fluid Mechanics.

[21]  B. Mandelbrot,et al.  Fractals: Form, Chance and Dimension , 1978 .

[22]  A. Chenciner,et al.  Bifurcations de tores invariants , 1979 .

[23]  J. D. Farmer,et al.  Chaotic attractors of an infinite-dimensional dynamical system , 1982 .