Molybdenum (Mo) back contacts for CIGS solar cells

Mo metal back contacts for CIGS solar cells have been reviewed. The electrical resistivity, reflectance and adhesive properties of Mo thin films are affected strongly by the film deposition parameters. A Mo thin film with low resistivity and good adhesion can be obtained through two-step process. This bilayer Mo thin film can be formed through the different film structures depending on the working pressure. A MoSe2 layer formed at CIGS/Mo interface changes the CIGS/Mo hetero-contact from Schottky-type contact to ohmic-type contact. It also improves the adhesion between CIGS and Mo layers when its c-axis is parallel to the Mo surface. Additionally, it forms the back surface field for CIGS solar cells. However, the MoSe2 formation and c-axis orientation depend on the state of Mo prior to selenization, the medium of selenization, and the substrate temperature during selenization. At last, a single layer Mo thin film with low enough resistivity and good adhesion has been fabricated successfully by the pulse magnetron sputtering technology with appropriate deposition parameters.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  L. H. Slack Solar Energy Materials , 1979 .

[3]  Richard H. Bube,et al.  Fundamentals of solar cells , 1983 .

[4]  B. G. Yacobi,et al.  LetterTransmission electron microscopy and X-ray photoelectron spectroscopy investigations of the MoCuInSe2 interface , 1984 .

[5]  M. Agarwal,et al.  Growth conditions and structural characterization of molybdenum sulphoselenide single crystals: (MoSxSe2−x, 0≦x≦2) , 1985 .

[6]  J. Bernède,et al.  Characterization of MoSe2 thin films , 1988 .

[7]  Masamitsu Itoh,et al.  The origin of stress in sputter‐deposited tungsten films for x‐ray masks , 1991 .

[8]  S. Raud,et al.  Study of the CuInSe2/Mo thin film contact stability , 1991 .

[9]  R. Hoffman,et al.  The effect of ion bombardment on the microstructure and properties of molybdenum films , 1991 .

[10]  D. Schmid,et al.  A comprehensive characterization of the interfaces in Mo/CIS/CdS/ZnO solar cell structures , 1994, Proceedings of 1994 IEEE 1st World Conference on Photovoltaic Energy Conversion - WCPEC (A Joint Conference of PVSC, PVSEC and PSEC).

[11]  John H. Scofield,et al.  Sputtered molybdenum bilayer back contact for copper indium diselenide-based polycrystalline thin-film solar cells , 1995 .

[12]  N. Kohara,et al.  Chemical and Structural Characterization of Cu(In,Ga)Se2/Mo Interface in Cu(In,Ga)Se2 Solar Cells , 1996 .

[13]  S. Nishiwaki,et al.  Characterization of Cu(In,Ga)Se 2 /Mo Interface in CIGS Solar Cells , 1997 .

[14]  T. Nakada Improved compositional flexibility of Cu(In,Ga)Se2-based thin film solar cells by sodium control technique , 1997 .

[15]  S. Nishiwaki,et al.  MoSe 2 layer formation at Cu(In,Ga)Se 2/Mo Interfaces in High Efficiency Cu(In1- xGa x)Se 2 Solar Cells , 1998 .

[16]  G. Gordillo,et al.  Structural and electrical properties of DC sputtered molybdenum films , 1998 .

[17]  Textured MoS2 thin films obtained on tungsten: Electrical properties of the W/MoS2 contact , 2000 .

[18]  K. Granath,et al.  The effect of NaF on Cu(In, Ga)Se2 thin film solar cells , 2000 .

[19]  B. Dimmler,et al.  Scaling up issues of CIGS solar cells , 2000 .

[20]  J. Morante,et al.  Microstructure and secondary phases in coevaporated CuInS2 films: Dependence on growth temperature and chemical composition , 2001 .

[21]  S. Nishiwaki,et al.  Electrical properties of the Cu(In,Ga)Se2/ MoSe2/Mo structure , 2001 .

[22]  S. Nishiwaki,et al.  Characterization of the Cu(In,Ga)Se2/Mo interface in CIGS solar cells , 2001 .

[23]  R. Würz,et al.  Formation of an interfacial MoSe2 layer in CVD grown CuGaSe2 based thin film solar cells , 2003 .

[24]  Jürgen H. Werner,et al.  Alternative back contact materials for thin film Cu(In,Ga)Se2 solar cells , 2003 .

[25]  C. Guillén,et al.  Low-resistivity Mo thin films prepared by evaporation onto cm glass substrates , 2003 .

[26]  L. Assmann,et al.  Study of the Mo thin films and Mo/CIGS interface properties , 2005 .

[27]  Q. Ji,et al.  The effect of sputtering particle energy on surface characteristics of Mo thin films , 2005 .

[28]  M. Döbeli,et al.  Formation and characterisation of MoSe2 for Cu(In,Ga)Se2 based solar cells , 2005 .

[29]  J. Yun,et al.  Fabrication of CIGS solar cells with a Na-doped Molayer on a Na-free substrate , 2007 .

[30]  R. Klenk,et al.  The influence of Na on low temperature growth of CIGS thin film solar cells on polyimide substrates , 2009 .

[31]  M. Ferenets,et al.  Thin Solid Films , 2010 .

[32]  Sang Jik Kwon,et al.  Molybdenum thin film deposited by in-line DC magnetron sputtering as a back contact for Cu(In,Ga)Se2 solar cells , 2011 .

[33]  L. Mansfield,et al.  Sodium-doped molybdenum targets for controllable sodium incorporation in CIGS solar cells , 2011, 2011 37th IEEE Photovoltaic Specialists Conference.

[34]  Huang Fuqiang Progress of CuInGaSe_2 Thin Film Photovoltaic Cells and Solar Materials , 2011 .

[35]  M. Jubault,et al.  Optimization of molybdenum thin films for electrodeposited CIGS solar cells , 2011 .

[36]  D. Hariskos,et al.  New world record efficiency for Cu(In,Ga)Se2 thin‐film solar cells beyond 20% , 2011 .

[37]  P. Blösch,et al.  Optimization of Ti/TiN/Mo back contact properties for Cu(In,Ga)Se2 solar cells on polyimide foils , 2011 .

[38]  Neelkanth G. Dhere,et al.  Scale-up issues of CIGS thin film PV modules , 2011 .

[39]  W. Marsden I and J , 2012 .

[40]  A. Bollero,et al.  Thermal stability of sputtered Mo/polyimide films and formation of MoSe2 and MoS2 layers for application in flexible Cu(In,Ga)(Se,S)2 based solar cells , 2012 .

[41]  张雷,et al.  Determining factor of MoSe2 formation in Cu(In,Ga)Se2 solar Cells , 2012 .

[42]  P. Bommersbach,et al.  Influence of Mo back contact porosity on co‐evaporated Cu(In,Ga)Se2 thin film properties and related solar cell , 2013 .

[43]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.