Integrating remote-sensing and ground-based observations for estimation of emissions and removals of greenhouse gases in forests

[1]  J. A. Trofymow,et al.  CBM-CFS3: A model of carbon-dynamics in forestry and land-use change implementing IPCC standards , 2009 .

[2]  C. Woodcock,et al.  Making better use of accuracy data in land change studies: Estimating accuracy and area and quantifying uncertainty using stratified estimation , 2013 .

[3]  D. Jenkinson,et al.  Model estimates of CO2 emissions from soil in response to global warming , 1991, Nature.

[4]  Maurizio Mencuccini,et al.  On simplifying allometric analyses of forest biomass , 2004 .

[5]  D. Griffith,et al.  Emissions from smoldering combustion of biomass measured by open‐path Fourier transform infrared spectroscopy , 1997 .

[6]  Sandra A. Brown,et al.  Monitoring and estimating tropical forest carbon stocks: making REDD a reality , 2007 .

[7]  Karl J. Niklas,et al.  Invariant scaling relations across tree-dominated communities , 2001, Nature.

[8]  Kenneth B. Pierce,et al.  Quantification of live aboveground forest biomass dynamics with Landsat time-series and field inventory data: A comparison of empirical modeling approaches , 2010 .

[9]  Marcia J. Lambert,et al.  Additive biomass equations for native eucalypt forest trees of temperate Australia , 2004, Trees.

[10]  M. Herold,et al.  Mapping biomass with remote sensing: a comparison of methods for the case study of Uganda , 2011, Carbon balance and management.

[11]  D. Moorhead,et al.  Climate and litter quality controls on decomposition: An analysis of modeling approaches , 1999 .

[12]  Eliakimu Zahabu,et al.  Reduced emissions from deforestation and degradation , 2007 .

[13]  Andrew K. Skidmore,et al.  Allometric equations for estimating the above-ground biomass in tropical lowland Dipterocarp forests , 2009 .

[14]  M. Bauer,et al.  Digital change detection in forest ecosystems with remote sensing imagery , 1996 .

[15]  Gregory P. Asner,et al.  Tropical forest carbon assessment: integrating satellite and airborne mapping approaches , 2009 .

[16]  O. Edenhofer,et al.  Intergovernmental Panel on Climate Change (IPCC) , 2013 .

[17]  Matthias Peichl,et al.  Allometry and partitioning of above- and belowground tree biomass in an age-sequence of white pine forests , 2007 .

[18]  Göran Ståhl,et al.  Preparing emission reporting from forests: use of National Forest Inventories in European countries , 2008 .

[19]  David B. Clark,et al.  Landscape-scale variation in forest structure and biomass in a tropical rain forest , 2000 .

[20]  E. Lindquist,et al.  Multiple remote sensing data sources for REDD+ monitoring , 2012 .

[21]  R. Dubayah,et al.  Above-ground biomass estimation in closed canopy Neotropical forests using lidar remote sensing: factors affecting the generality of relationships , 2003 .

[22]  Göran Ståhl,et al.  Assessing the accuracy of regional LiDAR-based biomass estimation using a simulation approach , 2012 .

[23]  M. Herold,et al.  Exploring different forest definitions and their impact on developing REDD+ reference emission levels: a case study for Indonesia , 2013 .

[24]  Ronald E. McRoberts,et al.  Post-classification approaches to estimating change in forest area using remotely sensed auxiliary data , 2014 .

[25]  W. Kurz,et al.  Developing Canada's National Forest Carbon Monitoring, Accounting and Reporting System to Meet the Reporting Requirements of the Kyoto Protocol , 2006 .

[26]  Urs Wegmüller,et al.  Retrieval of growing stock volume in boreal forest using hyper-temporal series of Envisat ASAR ScanSAR backscatter measurements , 2011 .

[27]  A. Prokushkin,et al.  Critical analysis of root : shoot ratios in terrestrial biomes , 2006 .

[28]  Belinda A. Margono,et al.  Mapping and monitoring deforestation and forest degradation in Sumatra (Indonesia) using Landsat time series data sets from 1990 to 2010 , 2012 .

[29]  S. Roxburgh,et al.  Testing allometric equations for prediction of above-ground biomass of mallee eucalypts in southern Australia , 2013 .

[30]  Eric A. Lehmann,et al.  Forest cover trends from time series Landsat data for the Australian continent , 2013, Int. J. Appl. Earth Obs. Geoinformation.

[31]  James S. Clark,et al.  Why environmental scientists are becoming Bayesians , 2004 .

[32]  J. Heikkinen,et al.  Interpolating and Extrapolating Information from Periodic Forest Surveys for Annual Greenhouse Gas Reporting , 2012 .

[33]  Sassan Saatchi,et al.  Mapping tropical forest biomass with radar and spaceborne LiDAR: overcoming problems of high biomass and persistent cloud , 2011 .

[34]  G. Sánchez‐Azofeifa,et al.  Monitoring secondary tropical forests using space-borne data: Implications for Central America , 2003 .

[35]  Curtis E. Woodcock,et al.  Monitoring large areas for forest change using Landsat: Generalization across space, time and Landsat sensors , 2001 .

[36]  Göran Ståhl,et al.  Model-assisted estimation of biomass in a LiDAR sample survey in Hedmark County, NorwayThis article is one of a selection of papers from Extending Forest Inventory and Monitoring over Space and Time. , 2011 .

[37]  R. McRoberts,et al.  Using the regression estimator with Landsat data to estimate proportion forest cover and net proportion deforestation in Gabon , 2014 .

[38]  P. Kandel Monitoring above-ground forest biomass: A comparison of cost and accuracy between LiDAR assisted multisource programme and field-based forest resource assessment in Nepal , 2013 .

[39]  P. Snowdon,et al.  A ratio estimator for bias correction in logarithmic regressions , 1991 .

[40]  S. Hubbell,et al.  Spatial and temporal variation of biomass in a tropical forest: results from a large census plot in Panama , 2003 .

[41]  C. Barton,et al.  Effect of spacing and water availability on root:shoot ratio in Eucalyptus camaldulensis , 2006 .

[42]  J. V. Soares,et al.  Distribution of aboveground live biomass in the Amazon basin , 2007 .

[43]  R. Birdsey,et al.  National-Scale Biomass Estimators for United States Tree Species , 2003, Forest Science.

[44]  Ronald E. McRoberts,et al.  Statistical inference for remote sensing-based estimates of net deforestation , 2012 .

[45]  P. Muukkonen,et al.  Generalized allometric volume and biomass equations for some tree species in Europe , 2007, European Journal of Forest Research.

[46]  James H. Brown,et al.  A general model for the structure and allometry of plant vascular systems , 1999, Nature.

[47]  Yu Zeng,et al.  Change detection approach to SAR and optical image integration , 2008 .

[48]  J. Chave,et al.  Structure and Biomass of Four Lowland Neotropical Forests , 2004 .

[49]  Josef Kellndorfer,et al.  Large-Area Classification and Mapping of Forest and Land Cover in the Brazilian Amazon: A Comparative Analysis of ALOS/PALSAR and Landsat Data Sources , 2010, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[50]  Dar A. Roberts,et al.  Ten-Year Landsat Classification of Deforestation and Forest Degradation in the Brazilian Amazon , 2013, Remote. Sens..

[51]  Carlos A. Sierra,et al.  Probability distribution of allometric coefficients and Bayesian estimation of aboveground tree biomass , 2012 .

[52]  Jin Chen,et al.  A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky-Golay filter , 2004 .

[53]  Masanobu Shimada,et al.  An Evaluation of the ALOS PALSAR L-Band Backscatter—Above Ground Biomass Relationship Queensland, Australia: Impacts of Surface Moisture Condition and Vegetation Structure , 2010, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[54]  Jeffrey Q. Chambers,et al.  Tree damage, allometric relationships, and above-ground net primary production in central Amazon forest , 2001 .

[55]  Lindsay B. Hutley,et al.  Allometry for estimating aboveground tree biomass in tropical and subtropical eucalypt woodlands: towards general predictive equations , 2005 .

[56]  J. Chambers,et al.  Tree allometry and improved estimation of carbon stocks and balance in tropical forests , 2005, Oecologia.

[57]  G. Vieilledent,et al.  A universal approach to estimate biomass and carbon stock in tropical forests using generic allometric models. , 2012, Ecological applications : a publication of the Ecological Society of America.

[58]  D. A. King,et al.  Height-diameter allometry of tropical forest trees , 2010 .

[59]  Warren B. Cohen,et al.  Trajectory-based change detection for automated characterization of forest disturbance dynamics , 2007 .

[60]  Alexandre Bouvet,et al.  Estimating tropical deforestation from Earth observation data , 2010 .

[61]  R. Waring,et al.  A generalised model of forest productivity using simplified concepts of radiation-use efficiency, carbon balance and partitioning , 1997 .

[62]  C. Peng,et al.  General allometric equations and biomass allocation of Pinus massoniana trees on a regional scale in southern China , 2011, Ecological Research.

[63]  M. Cannell,et al.  Woody biomass of forest stands , 1984 .

[64]  S. Roxburgh,et al.  Improved estimation of biomass accumulation by environmental plantings and mallee plantings using FullCAM , 2013 .

[65]  A. Lugo,et al.  Estimating biomass and biomass change of tropical forests , 1997 .

[66]  A. Cowie,et al.  Developing general allometric relationships for regional estimates of carbon sequestration - an example using 'Eucalyptus pilularis' from seven contrasting sites , 2005 .

[67]  J. Terborgh,et al.  Tree height integrated into pantropical forest biomass estimates , 2012 .

[68]  M. Radojević,et al.  Emissions from the combustion of peat: an experimental study , 2000 .

[69]  R. B. Jackson,et al.  Rooting depths, lateral root spreads and below‐ground/above‐ground allometries of plants in water‐limited ecosystems , 2002 .

[70]  K. Richards,et al.  Environmental Science and Policy , 2015 .

[71]  Matieu Henry,et al.  Manual for building tree volume and biomass allometric equations: from field measurement to prediction , 2012 .

[72]  James S. Clark,et al.  Capturing diversity and interspecific variability in allometries: A hierarchical approach , 2008 .

[73]  Ariel E. Lugo,et al.  Biomass Estimation Methods for Tropical Forests with Applications to Forest Inventory Data , 1989, Forest Science.

[74]  Nicholas C. Coops,et al.  Assessing forest productivity in Australia and New Zealand using a physiologically-based model driven with averaged monthly weather data and satellite-derived estimates of canopy photosynthetic capacity , 1998 .

[75]  Göran Ståhl,et al.  Model-assisted estimation of change in forest biomass over an 11 year period in a sample survey supported by airborne LiDAR: A case study with post-stratification to provide “activity data” , 2013 .

[76]  Q. Ketterings,et al.  Reducing uncertainty in the use of allometric biomass equations for predicting above-ground tree biomass in mixed secondary forests , 2001 .

[77]  T. Baldauf Monitoring Reduced Emissions from Deforestation and Forest Degradation (REDD+) : Capabilities of High- Resolution Active Remote Sensing , 2013 .

[78]  Martha C. Anderson,et al.  Free Access to Landsat Imagery , 2008, Science.

[79]  S. Goetz,et al.  Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps , 2012 .

[80]  R. Ouimet,et al.  Estimation of coarse root biomass and nutrient content for sugar maple, jack pine, and black spruce using stem diameter at breast height , 2008 .

[81]  Martial Bernoux,et al.  Wood density, phytomass variations within and among trees, and allometric equations in a tropical rainforest of Africa , 2010 .

[82]  John R. Jensen,et al.  Introductory Digital Image Processing: A Remote Sensing Perspective , 1986 .

[83]  Lilian Blanc,et al.  Error propagation in biomass estimation in tropical forests , 2013 .

[84]  Ruth S. DeFries,et al.  Earth observations for estimating greenhouse gas emissions from deforestation in developing countries , 2007 .

[85]  Jerome K. Vanclay,et al.  Evaluating a growth model for forest management using continuous forest inventory data , 1995 .

[86]  H. Andersen,et al.  Using multilevel remote sensing and ground data to estimate forest biomass resources in remote regions: a case study in the boreal forests of interior Alaska , 2011 .

[87]  E. Tomppo National Forest Inventories : pathways for common reporting , 2010 .

[88]  Alan H. Strahler,et al.  Change-vector analysis in multitemporal space: a tool to detect and categorize land-cover change pro , 1994 .

[89]  Stephen V. Stehman,et al.  Model-assisted estimation as a unifying framework for estimating the area of land cover and land-cover change from remote sensing , 2009 .

[90]  R. J. Raison Forest management in Australia: Implications for carbon budgets , 2008 .

[91]  S. Hamburg,et al.  Allometric equations for young northern hardwoods: the importance of age-specific equations for estimating aboveground biomass , 2011 .

[92]  F. Ximenes,et al.  Proportion of above-ground biomass in commercial logs and residues following the harvest of five commercial forest species in Australia , 2008 .

[93]  Terje Gobakken,et al.  Inference for lidar-assisted estimation of forest growing stock volume , 2013 .

[94]  Geoff Smith,et al.  The characterisation and measurement of land cover change through remote sensing: problems in operational applications? , 2003 .

[95]  Maxim Shoshany,et al.  Influence of slope aspect on Mediterranean woody formations: Comparison of a semiarid and an arid site in Israel , 2001, Ecological Research.

[96]  S. Goetz,et al.  Satellite-based primary forest degradation assessment in the Democratic Republic of the Congo, 2000–2010 , 2013 .

[97]  Pol Coppin,et al.  Review ArticleDigital change detection methods in ecosystem monitoring: a review , 2004 .

[98]  Youshouzhai Gu Echo , 1980, The Craft of Poetry.

[99]  W. Kurz,et al.  An inventory-based analysis of Canada's managed forest carbon dynamics, 1990 to 2008 , 2011, Global Change Biology.

[100]  D. Jenkinson,et al.  Modelling the turnover of organic matter in long-term experiments at Rothamsted , 1987 .

[101]  K. Niklas Size-dependent Allometry of Tree Height, Diameter and Trunk-taper , 1995 .

[102]  Ronald E. McRoberts,et al.  Probability- and model-based approaches to inference for proportion forest using satellite imagery as ancillary data , 2010 .

[103]  Florian Siegert,et al.  Monitoring Fire and Selective Logging Activities in Tropical Peat Swamp Forests , 2012, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[104]  Carl-Erik Särndal,et al.  Model Assisted Survey Sampling , 1997 .

[105]  G. Powell,et al.  High-resolution forest carbon stocks and emissions in the Amazon , 2010, Proceedings of the National Academy of Sciences.

[106]  Simon Cohen,et al.  Carbon emissions from smouldering peat in shallow and strong fronts , 2009 .

[107]  Ronald E. McRoberts,et al.  Using satellite imagery as ancillary data for increasing the precision of estimates for the Forest Inventory and Analysis program of the USDA Forest Service , 2005 .

[108]  B. Parresol Assessing Tree and Stand Biomass: A Review with Examples and Critical Comparisons , 1999, Forest Science.

[109]  S. Goetz,et al.  Importance of biomass in the global carbon cycle , 2009 .