Minimax flow tree problems
暂无分享,去创建一个
[1] Barrett W. Thomas,et al. Network design for time‐constrained delivery , 2008 .
[2] Leonidas Palios,et al. Multi-source Trees: Algorithms for Minimizing Eccentricity Cost Metrics , 2005, ISAAC.
[3] Ernst Althaus,et al. Approximating k-hop minimum-spanning trees , 2005, Oper. Res. Lett..
[4] Bang Ye Wu,et al. An improved algorithm for the k-source maximum eccentricity spanning trees , 2004, Discret. Appl. Math..
[5] H. Brendan McMahan,et al. Multi-source spanning trees: algorithms for minimizing source eccentricities , 2004, Discret. Appl. Math..
[6] Andrzej Proskurowski,et al. The complexity of minimizing certain cost metrics for k-source spanning trees , 2003, Discret. Appl. Math..
[7] Bang Ye Wu,et al. A polynomial time approximation scheme for the two-source minimum routing cost spanning trees , 2002, J. Algorithms.
[8] Luís Gouveia,et al. A new Lagrangean relaxation approach for the hop-constrained minimum spanning tree problem , 2001, Eur. J. Oper. Res..
[9] Chuan Yi Tang,et al. Approximation algorithms for the shortest total path length spanning tree problem , 2000, Discret. Appl. Math..
[10] Arthur M. Farley,et al. Multi-Source Spanning Tree Problems , 2000, J. Interconnect. Networks.
[11] Chuan Yi Tang,et al. Approximation algorithms for some optimum communication spanning tree problems , 1998, Discret. Appl. Math..
[12] Geir Dahl,et al. The 2-hop spanning tree problem , 1998, Oper. Res. Lett..
[13] D. Peleg,et al. Deterministic Polylog Approximation for Minimum Communication Spanning Trees , 1998, ICALP.
[14] Luís Gouveia,et al. Using Variable Redefinition for Computing Lower Bounds for Minimum Spanning and Steiner Trees with Hop Constraints , 1998, INFORMS J. Comput..
[15] D. Peleg,et al. Polylogarithmic Approximation for Minimum Communication Spanning Trees , 1997 .
[16] L. Gouveia. Multicommodity flow models for spanning trees with hop constraints , 1996 .
[17] Matthias F. Stallmann,et al. Some Approximation Results in Multicasting , 1996 .
[18] Luís Gouveia,et al. Using the Miller-Tucker-Zemlin constraints to formulate a minimal spanning tree problem with hop constraints , 1995, Comput. Oper. Res..
[19] Leizhen Cai,et al. Tree Spanners , 1995, SIAM J. Discret. Math..
[20] Warren B. Powell,et al. Shipment Routing Algorithms with Tree Constraints , 1992, Transp. Sci..
[21] Chak-Kuen Wong,et al. Minimum Diameter Spanning Trees and Related Problems , 1991, SIAM J. Comput..
[22] Subhash Suri,et al. Offline maintenance of planar configurations , 1991, SODA '91.
[23] David Peleg,et al. An optimal synchronizer for the hypercube , 1987, PODC '87.
[24] R. K. Ahuja,et al. Exact and Heuristic Algorithms for the Optimum Communication Spanning Tree Problem , 1987, Transp. Sci..
[25] Paul Chew,et al. There is a planar graph almost as good as the complete graph , 1986, SCG '86.
[26] Robert E. Tarjan,et al. Fibonacci heaps and their uses in improved network optimization algorithms , 1984, JACM.
[27] O. Kariv,et al. An Algorithmic Approach to Network Location Problems. I: The p-Centers , 1979 .
[28] O. Kariv,et al. An Algorithmic Approach to Network Location Problems. II: The p-Medians , 1979 .
[29] Jan Karel Lenstra,et al. The complexity of the network design problem , 1978, Networks.
[30] R. L. Francis,et al. A Minimax Location Problem on a Network , 1974 .
[31] T. C. Hu. Optimum Communication Spanning Trees , 1974, SIAM J. Comput..
[32] G. Handler. Minimax Location of a Facility in an Undirected Tree Graph , 1973 .
[33] S. L. Hakimi,et al. Optimum Locations of Switching Centers and the Absolute Centers and Medians of a Graph , 1964 .
[34] Hui-Huang Chen. Minimum Distance Violation Tree Problems , 2007 .
[35] David W. Krumme,et al. Minimum Eccentricity Multicast Trees , 2001, Discret. Math. Theor. Comput. Sci..
[36] S. Voß,et al. The Steiner tree problem with hop constraints , 1999, Ann. Oper. Res..
[37] Chuan Yi Tang,et al. A polynomial time approximation scheme for minimum routing cost spanning trees , 1998, SODA '98.
[38] Refael Hassin,et al. On the Minimum Diameter Spanning Tree Problem , 1995, Inf. Process. Lett..
[39] Dominique Peeters,et al. Location on networks , 1992 .
[40] S. L. HAKIMIt. AN ALGORITHMIC APPROACH TO NETWORK LOCATION PROBLEMS. , 1979 .
[41] Jan Karel Lenstra,et al. The complexity of the network design problem : (preprint) , 1977 .