Minimax flow tree problems

We examine a class of problems that seeks to find tree‐structured networks that minimize the maximum cost among a subset of nodes in a graph. The cost metric is characterized by a series of parameters that can represent distance, flow volume, and delivery deadlines. Derived through variations in problem parameters, we present 17 different problems and discuss their worst‐case complexities. Fourteen of the problems are new to the literature. We show that some of the problems are 𝒩𝒫‐Complete and others are polynomially solvable. © 2009 Wiley Periodicals, Inc. NETWORKS, 2009

[1]  Barrett W. Thomas,et al.  Network design for time‐constrained delivery , 2008 .

[2]  Leonidas Palios,et al.  Multi-source Trees: Algorithms for Minimizing Eccentricity Cost Metrics , 2005, ISAAC.

[3]  Ernst Althaus,et al.  Approximating k-hop minimum-spanning trees , 2005, Oper. Res. Lett..

[4]  Bang Ye Wu,et al.  An improved algorithm for the k-source maximum eccentricity spanning trees , 2004, Discret. Appl. Math..

[5]  H. Brendan McMahan,et al.  Multi-source spanning trees: algorithms for minimizing source eccentricities , 2004, Discret. Appl. Math..

[6]  Andrzej Proskurowski,et al.  The complexity of minimizing certain cost metrics for k-source spanning trees , 2003, Discret. Appl. Math..

[7]  Bang Ye Wu,et al.  A polynomial time approximation scheme for the two-source minimum routing cost spanning trees , 2002, J. Algorithms.

[8]  Luís Gouveia,et al.  A new Lagrangean relaxation approach for the hop-constrained minimum spanning tree problem , 2001, Eur. J. Oper. Res..

[9]  Chuan Yi Tang,et al.  Approximation algorithms for the shortest total path length spanning tree problem , 2000, Discret. Appl. Math..

[10]  Arthur M. Farley,et al.  Multi-Source Spanning Tree Problems , 2000, J. Interconnect. Networks.

[11]  Chuan Yi Tang,et al.  Approximation algorithms for some optimum communication spanning tree problems , 1998, Discret. Appl. Math..

[12]  Geir Dahl,et al.  The 2-hop spanning tree problem , 1998, Oper. Res. Lett..

[13]  D. Peleg,et al.  Deterministic Polylog Approximation for Minimum Communication Spanning Trees , 1998, ICALP.

[14]  Luís Gouveia,et al.  Using Variable Redefinition for Computing Lower Bounds for Minimum Spanning and Steiner Trees with Hop Constraints , 1998, INFORMS J. Comput..

[15]  D. Peleg,et al.  Polylogarithmic Approximation for Minimum Communication Spanning Trees , 1997 .

[16]  L. Gouveia Multicommodity flow models for spanning trees with hop constraints , 1996 .

[17]  Matthias F. Stallmann,et al.  Some Approximation Results in Multicasting , 1996 .

[18]  Luís Gouveia,et al.  Using the Miller-Tucker-Zemlin constraints to formulate a minimal spanning tree problem with hop constraints , 1995, Comput. Oper. Res..

[19]  Leizhen Cai,et al.  Tree Spanners , 1995, SIAM J. Discret. Math..

[20]  Warren B. Powell,et al.  Shipment Routing Algorithms with Tree Constraints , 1992, Transp. Sci..

[21]  Chak-Kuen Wong,et al.  Minimum Diameter Spanning Trees and Related Problems , 1991, SIAM J. Comput..

[22]  Subhash Suri,et al.  Offline maintenance of planar configurations , 1991, SODA '91.

[23]  David Peleg,et al.  An optimal synchronizer for the hypercube , 1987, PODC '87.

[24]  R. K. Ahuja,et al.  Exact and Heuristic Algorithms for the Optimum Communication Spanning Tree Problem , 1987, Transp. Sci..

[25]  Paul Chew,et al.  There is a planar graph almost as good as the complete graph , 1986, SCG '86.

[26]  Robert E. Tarjan,et al.  Fibonacci heaps and their uses in improved network optimization algorithms , 1984, JACM.

[27]  O. Kariv,et al.  An Algorithmic Approach to Network Location Problems. I: The p-Centers , 1979 .

[28]  O. Kariv,et al.  An Algorithmic Approach to Network Location Problems. II: The p-Medians , 1979 .

[29]  Jan Karel Lenstra,et al.  The complexity of the network design problem , 1978, Networks.

[30]  R. L. Francis,et al.  A Minimax Location Problem on a Network , 1974 .

[31]  T. C. Hu Optimum Communication Spanning Trees , 1974, SIAM J. Comput..

[32]  G. Handler Minimax Location of a Facility in an Undirected Tree Graph , 1973 .

[33]  S. L. Hakimi,et al.  Optimum Locations of Switching Centers and the Absolute Centers and Medians of a Graph , 1964 .

[34]  Hui-Huang Chen Minimum Distance Violation Tree Problems , 2007 .

[35]  David W. Krumme,et al.  Minimum Eccentricity Multicast Trees , 2001, Discret. Math. Theor. Comput. Sci..

[36]  S. Voß,et al.  The Steiner tree problem with hop constraints , 1999, Ann. Oper. Res..

[37]  Chuan Yi Tang,et al.  A polynomial time approximation scheme for minimum routing cost spanning trees , 1998, SODA '98.

[38]  Refael Hassin,et al.  On the Minimum Diameter Spanning Tree Problem , 1995, Inf. Process. Lett..

[39]  Dominique Peeters,et al.  Location on networks , 1992 .

[40]  S. L. HAKIMIt AN ALGORITHMIC APPROACH TO NETWORK LOCATION PROBLEMS. , 1979 .

[41]  Jan Karel Lenstra,et al.  The complexity of the network design problem : (preprint) , 1977 .