Isogeometric shell analysis: The Reissner-Mindlin shell

Abstract A Reissner–Mindlin shell formulation based on a degenerated solid is implemented for NURBS-based isogeometric analysis. The performance of the approach is examined on a set of linear elastic and nonlinear elasto-plastic benchmark examples. The analyses were performed with LS-DYNA, an industrial, general-purpose finite element code, for which a user-defined shell element capability was implemented. This new feature, to be reported on in subsequent work, allows for the use of NURBS and other non-standard discretizations in a sophisticated nonlinear analysis framework.

[1]  T. Hughes,et al.  Isogeometric fluid-structure interaction: theory, algorithms, and computations , 2008 .

[2]  Thomas J. R. Hughes,et al.  NURBS-based isogeometric analysis for the computation of flows about rotating components , 2008 .

[3]  Les A. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communication.

[4]  D. F. Rogers,et al.  An Introduction to NURBS: With Historical Perspective , 2011 .

[5]  Gershon Elber,et al.  Geometric modeling with splines - an introduction , 2001 .

[6]  John A. Evans,et al.  Robustness of isogeometric structural discretizations under severe mesh distortion , 2010 .

[7]  T. Hughes,et al.  Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows , 2007 .

[8]  Wing Kam Liu,et al.  Nonlinear Finite Elements for Continua and Structures , 2000 .

[9]  Scott E. Schoenfeld,et al.  Quickly convergent integration methods for plane stress plasticity , 1993 .

[10]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[11]  T. Hughes,et al.  Isogeometric Fluid–structure Interaction Analysis with Applications to Arterial Blood Flow , 2006 .

[12]  J. Szmelter Incompressible flow and the finite element method , 2001 .

[13]  David J. Benson,et al.  A single surface contact algorithm for the post-buckling analysis of shell structures , 1990 .

[14]  Alessandro Reali,et al.  Isogeometric Analysis of Structural Vibrations , 2006 .

[15]  John A. Evans,et al.  Isogeometric analysis using T-splines , 2010 .

[16]  Alessandro Reali,et al.  Duality and unified analysis of discrete approximations in structural dynamics and wave propagation : Comparison of p-method finite elements with k-method NURBS , 2008 .

[17]  Peter Schröder,et al.  Integrated modeling, finite-element analysis, and engineering design for thin-shell structures using subdivision , 2002, Comput. Aided Des..

[18]  Hongwei Lin,et al.  Watertight trimmed NURBS , 2008, ACM Trans. Graph..

[19]  Ronald Maier,et al.  Integrated Modeling , 2011, Encyclopedia of Knowledge Management.

[20]  Michael Ortiz,et al.  Fully C1‐conforming subdivision elements for finite deformation thin‐shell analysis , 2001, International Journal for Numerical Methods in Engineering.

[21]  D. Benson Computational methods in Lagrangian and Eulerian hydrocodes , 1992 .

[22]  David J. Benson,et al.  Stable time step estimation for multi-material Eulerian hydrocodes , 1998 .

[23]  W. Wall,et al.  Isogeometric structural shape optimization , 2008 .

[24]  J. H. Wilkinson The algebraic eigenvalue problem , 1966 .

[25]  K. Höllig Finite element methods with B-splines , 1987 .

[26]  L. Morino,et al.  An Improved Numerical Calculation Technique for Large Elastic-Plastic Transient Deformations of Thin Shells: Part 2—Evaluation and Applications , 1971 .

[27]  T. Belytschko,et al.  A uniform strain hexahedron and quadrilateral with orthogonal hourglass control , 1981 .

[28]  Jerry I. Lin,et al.  Explicit algorithms for the nonlinear dynamics of shells , 1984 .

[29]  M. Ortiz,et al.  Subdivision surfaces: a new paradigm for thin‐shell finite‐element analysis , 2000 .

[30]  Thomas J. R. Hughes,et al.  Nonlinear finite element analysis of shells: Part I. three-dimensional shells , 1981 .

[31]  Thomas J. R. Hughes,et al.  Implicit-explicit finite elements in nonlinear transient analysis , 1979 .

[32]  B. Simeon,et al.  Adaptive isogeometric analysis by local h-refinement with T-splines , 2010 .

[33]  E. Ramm,et al.  Models and finite elements for thin-walled structures , 2004 .

[34]  J. Z. Zhu,et al.  The finite element method , 1977 .

[35]  Wing Kam Liu,et al.  Stress projection for membrane and shear locking in shell finite elements , 1985 .

[36]  Victor M. Calo,et al.  The role of continuity in residual-based variational multiscale modeling of turbulence , 2007 .

[37]  Hong Qin,et al.  Polycube splines , 2007, Comput. Aided Des..

[38]  David W. Murray,et al.  Nonlinear Finite Element Analysis of Steel Frames , 1983 .

[39]  T. Hughes,et al.  B¯ and F¯ projection methods for nearly incompressible linear and non-linear elasticity and plasticity using higher-order NURBS elements , 2008 .