PyFLOWGO: An open-source platform for simulation of channelized lava thermo-rheological properties

Lava flow advance can be modeled through tracking the evolution of the thermo-rheological properties of a control volume of lava as it cools and crystallizes. An example of such a model was conceived by Harris and Rowland (2001) who developed a 1-D model, FLOWGO, in which the velocity of a control volume flowing down a channel depends on rheological properties computed following the thermal path estimated via a heat balance box model. We provide here an updated version of FLOWGO written in Python that is an open-source, modern and flexible language. Our software, named PyFLOWGO, allows selection of heat fluxes and rheological models of the user's choice to simulate the thermo-rheological evolution of the lava control volume. We describe its architecture which offers more flexibility while reducing the risk of making error when changing models in comparison to the previous FLOWGO version. Three cases are tested using actual data from channel-fed lava flow systems and results are discussed in terms of model validation and convergence. PyFLOWGO is open-source and packaged in a Python library to be imported and reused in any Python program (https://github.com/pyflowgo/pyflowgo).

[1]  G. Hulme,et al.  The Interpretation of Lava Flow Morphology , 1974 .

[2]  G. Macedonio,et al.  Viscous heating in fluids with temperature-dependent viscosity: implications for magma flows , 2003 .

[3]  Roger P. Denlinger,et al.  The initial cooling of pahoehoe flow lobes , 1996 .

[4]  Tjondro Indrasutanto,et al.  Dynamics of Lava Flows , 2009 .

[5]  Luca Caricchi,et al.  A model for the rheology of particle‐bearing suspensions and partially molten rocks , 2009 .

[6]  Andrew J. L. Harris,et al.  FLOWGO 2012: An Updated Framework for Thermorheological Simulations of Channel-Contained Lava , 2015 .

[7]  James D. Iversen,et al.  Dynamics of lava flow: Thickness growth characteristics of steady two-dimensional flow , 1984 .

[8]  Maria Teresa Pareschi,et al.  Best‐fit results from application of a thermo‐rheological model for channelized lava flow to high spatial resolution morphological data , 2007 .

[9]  G. Tammann,et al.  Die Abhängigkeit der Viscosität von der Temperatur bie unterkühlten Flüssigkeiten , 1926 .

[10]  L. Keszthelyi A preliminary thermal budget for lava tubes on the Earth and planets , 1995 .

[11]  Andrew J. L. Harris,et al.  Textural and rheological evolution of basalt flowing down a lava channel , 2014, Bulletin of Volcanology.

[12]  Alison C Rust,et al.  Rheology and flow of crystal-bearing lavas: Insights from analogue gravity currents , 2010 .

[13]  James P. Kauahikaua,et al.  The length of channelized lava flows: Insight from the 1859 eruption of Mauna Loa Volcano, Hawai‘i , 2009 .

[14]  Rajinder Pal,et al.  Rheological behavior of bubble-bearing magmas , 2003 .

[15]  J. M. Bremner,et al.  Seasonal variability in emission of nitrous oxide from soil , 1980 .

[16]  J. P. Kauahikaua,et al.  Emplacement and inflation of pahoehoe sheet flows: observations and measurements of active lava flows on Kilauea volcano, Hawaii , 1994 .

[17]  David C. Pieri,et al.  Thermal radiance observations of an active lava flow during the June 1984 eruption of Mount Etna , 1990 .

[18]  Maurizio Ripepe,et al.  Lava effusion rates from hand-held thermal infrared imagery: an example from the June 2003 effusive activity at Stromboli , 2005 .

[19]  M. Dragoni,et al.  A dynamical model of lava flows cooling by radiation , 1989 .

[20]  P. E. Pierce,et al.  Application of ree-eyring generalized flow theory to suspensions of spherical particles , 1956 .

[21]  James P. Kauahikaua,et al.  Cooling and crystallization of lava in open channels, and the transition of Pāhoehoe Lava to 'A'ā , 1999 .

[22]  Mathijs Saey,et al.  Q-LAVHA: A flexible GIS plugin to simulate lava flows , 2016, Comput. Geosci..

[23]  D. Dingwell,et al.  Viscosity of magmatic liquids: A model , 2008 .

[24]  Andrew J. L. Harris,et al.  Observations of the effect of wind on the cooling of active lava flows , 2003 .

[25]  Joy A. Crisp,et al.  Influence of crystallization and entrainment of cooler material on the emplacement of basaltic aa lava flows , 1994 .

[26]  Jan Mewis,et al.  Rheology of Suspensions , 1980 .

[27]  Robert Wright,et al.  Using infrared satellite data to drive a thermo‐rheological/stochastic lava flow emplacement model: A method for near‐real‐time volcanic hazard assessment , 2008 .

[28]  Lionel Wilson,et al.  The formation of perched lava ponds on basaltic volcanoes: the influence of flow geometry on cooling-limited lava flow lengths , 1993 .

[29]  T. E. Helminiak,et al.  Application of Ree-Eyring generalized flow theory to dilution solutions of potassium-p-polystyrene sulfonate , 1958 .

[30]  A. Harris,et al.  FLOWGO: a kinematic thermo-rheological model for lava flowing in a channel , 2001 .

[31]  Donald B. Dingwell,et al.  Volcanic Dilemma--Flow or Blow? , 1996, Science.

[32]  S. Baloga,et al.  Eruption rate, area, and length relationships for some Hawaiian lava flows , 1986 .

[33]  Joy A. Crisp,et al.  A model for lava flows with two thermal components , 1990 .

[34]  Herbert R. Shaw,et al.  Comments on viscosity, crystal settling, and convection in granitic magmas , 1965 .

[35]  Michael Manga,et al.  Bubble suspension rheology and implications for conduit flow , 2005 .

[36]  F. J. Ryerson,et al.  Rheology of subliquidus magmas: 1. Picritic compositions , 1988 .

[37]  Stephen Self,et al.  Some physical requirements for the emplacement of long basaltic lava flows , 1998 .

[38]  Corrado Cimarelli,et al.  Rheology of magmas with bimodal crystal size and shape distributions: Insights from analog experiments , 2011 .

[39]  Harold Garbeil,et al.  Effects of Martian conditions on numerically modeled, cooling‐limited, channelized lava flows , 2004 .

[40]  Andrew J. L. Harris,et al.  The changing morphology of an open lava channel on Mt. Etna , 2006 .

[41]  Eric Rignot,et al.  Channelized bottom melting and stability of floating ice shelves , 2008 .

[42]  Harold Jeffreys M.A. D.Sc. LXXXIV. The flow of water in an inclined channel of rectangular section , 1925 .

[43]  Johnny Wei-Bing Lin Why Python Is the Next Wave in Earth Sciences Computing , 2012 .

[44]  David C. Pieri,et al.  Crystallization history of the 1984 Mauna Loa lava flow , 1994 .

[45]  Mark S. Ghiorso,et al.  Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures , 1995 .

[46]  Harry Pinkerton,et al.  Methods of determining the rheological properties of magmas at sub-liquidus temperatures. , 1992 .

[47]  H. Mader,et al.  The rheology of two-phase magmas: A review and analysis , 2013 .

[48]  Daniele Giordano,et al.  In situ thermal characterization of cooling/crystallizing lavas during rheology measurements and implications for lava flow emplacement , 2016 .

[49]  I. Krieger,et al.  Rheology of monodisperse latices , 1972 .

[50]  Willi Pabst,et al.  Fundamental considerations on suspension rheology , 2004 .

[51]  Matthieu Kervyn,et al.  Numerical experiments on the dynamics of channelised lava flows at Mount Cameroon volcano with the FLOWGO thermo-rheological model , 2013 .

[52]  Laszlo P. Keszthelyi,et al.  Measurements of the cooling at the base of Pahoehoe Flows , 1995 .

[53]  Robert Wright,et al.  Hazard assessment at Mount Etna using a hybrid lava flow inundation model and satellite-based land classification , 2011 .

[54]  Helge M. Gonnermann,et al.  Effects of crystal shape‐ and size‐modality on magma rheology , 2015 .

[55]  Ernst Hauber,et al.  Lava flow rheology: A comparison of morphological and petrological methods , 2013 .

[56]  Benoit Bjr Cordonnier,et al.  Benchmarking lava-flow models , 2015, Special Publications.

[57]  Thomas J. Dougherty,et al.  A Mechanism for Non‐Newtonian Flow in Suspensions of Rigid Spheres , 1959 .

[58]  D. Crown,et al.  What can thermal infrared remote sensing of terrestrial volcanoes tell us about processes past and present on Mars , 2014 .

[59]  E. W. Llewellin,et al.  The rheology of suspensions of solid particles , 2010, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[60]  Nhan Phan-Thien,et al.  Differential multiphase models for polydispersed suspensions and particulate solids , 1997 .

[61]  Andrew J. L. Harris,et al.  Simulating the thermorheological evolution of channel-contained lava: FLOWGO and its implementation in EXCEL , 2015, Special Publications.

[62]  H. R. Shaw Viscosities of magmatic silicate liquids; an empirical method of prediction , 1972 .

[63]  Mark S. Ghiorso,et al.  Chemical mass transfer in magmatic processes , 1987 .

[64]  G. Fulcher,et al.  ANALYSIS OF RECENT MEASUREMENTS OF THE VISCOSITY OF GLASSES , 1925 .

[65]  Ronald Greeley,et al.  Measurements of wind friction speeds over lava surfaces and assessment of sediment transport , 1987 .

[66]  Harold Garbeil,et al.  Lengths and hazards from channel-fed lava flows on Mauna Loa, Hawai‘i, determined from thermal and downslope modeling with FLOWGO , 2005 .

[67]  L. Keszthelyi,et al.  Calculation of lava effusion rates from Landsat TM data , 1998 .

[68]  Peter J. Mouginis-Mark,et al.  Temperature of an active lava channel from spectral measurements, Kilauea Volcano, Hawaii , 1994 .