Influence of quenched-in vacancies on the elastic modulus and its dependence on the temperature in β CuAlBe shape memory alloys

[1]  T. Nieh,et al.  Evaluating elastic properties of a body-centered cubic NbHfZrTi high-entropy alloy – A direct comparison between experiments and ab initio calculations , 2019, Intermetallics.

[2]  S. González,et al.  A review on shape memory metallic alloys and their critical stress for twinning , 2019, Intermetallics.

[3]  S. Montecinos,et al.  Influence of microstructure on the Young's modulus in a Cu-2Be (wt%) alloy , 2017 .

[4]  S. Montecinos,et al.  Determination of the Young's modulus in CuAlBe shape memory alloys with different microstructures by impulse excitation technique , 2016 .

[5]  T. Nieh,et al.  Elastic and plastic deformations in a high entropy alloy investigated using a nanoindentation method , 2016 .

[6]  S. Montecinos Influence of microstructural parameters on damping capacity in CuAlBe shape memory alloys , 2015 .

[7]  S. Simison,et al.  Instrumented indentation of transforming and no-transforming phases in Cu–Al–Be shape-memory alloys , 2012 .

[8]  S. Simison,et al.  Influence of the microstructure on the corrosion behaviour of a shape memory Cu-Al-Be alloy in a marine environment , 2011 .

[9]  F. Lovey,et al.  Effect of γ2-phase precipitates on the martensitic transformation of a β-CuAlBe shape memory alloy , 2009 .

[10]  R. Boeri,et al.  Phase transformations during continuous cooling of polycrystalline β-CuAlBe alloys , 2009 .

[11]  S. Montecinos,et al.  Thermomechanical behavior of a CuAlBe shape memory alloy , 2008 .

[12]  Antonio Isalgue,et al.  Conditioning treatments of Cu–Al–Be shape memory alloys for dampers , 2006 .

[13]  Wen-hsiung Wang,et al.  Microstructural characterization of precipitates in Cu–10 wt.%Al–0.8 wt.%Be shape-memory alloy , 2006 .

[14]  J. Humbeeck,et al.  Stabilization and hyperstabilization of Cu–Al–Be β1′ martensite by thermal treatment and plastic deformation , 2004 .

[15]  J. Pons,et al.  Two-stage reverse transformation in hyperstabilized β1′ martensite , 2002 .

[16]  M. Morin,et al.  Application of acoustic technique to determine the temperature range of quenched-in defect mobility in Cu-Al-Be β'1 martensitic phase , 2000 .

[17]  L. Mañosa,et al.  A comparative study of the post-quench behaviour of Cu–Al–Be and Cu–Zn–Al shape memory alloys , 1998 .

[18]  L. Mañosa,et al.  Low Temperature Ageing Behaviour of Quenched Cu-Al-Be Shape Memory Alloy , 1997 .

[19]  L. Mañosa,et al.  Study of the order-disorder phase transitions in Cu-Al-Be shape memory alloys , 1997 .

[20]  G. Guénin,et al.  Elaboration and characterization of new low temperature shape memory CuAlBe alloys , 1993 .

[21]  T. Hsu,et al.  The Behavior of Quenched‐in Vacancies and Stabilization of Martensite in Copper‐Based Shape Memory Alloys , 1992 .

[22]  S. Kajiwara An X-Ray Study of Faulting in Martensite of Cu-Al Alloys , 1968 .

[23]  R. H. Chambers,et al.  TIME-DEPENDENT INTERNAL FRICTION IN ALUMINUM AND MAGNESIUM SINGLE CRYSTALS , 1960 .