Two decades of Martini: Better beads, broader scope

[1]  Christopher M. MacDermaid,et al.  SPICA Force Field for Proteins and Peptides. , 2022, Journal of chemical theory and computation.

[2]  F. Gräter,et al.  Martini 3 coarse-grained force field for poly(para-phenylene ethynylene)s. , 2022, Physical chemistry chemical physics : PCCP.

[3]  Williams E. Miranda,et al.  A molecular switch controls the impact of cholesterol on a Kir channel , 2022, Proceedings of the National Academy of Sciences of the United States of America.

[4]  Sérgio M. Santos,et al.  Sticky-MARTINI as a reactive coarse-grained model for molecular dynamics simulations of silica polymerization , 2022, npj Computational Materials.

[5]  M. D. Del Pópolo,et al.  Voltage-Induced Adsorption of Cationic Nanoparticles on Lipid Membranes. , 2022, The journal of physical chemistry. B.

[6]  K. Lindorff-Larsen,et al.  Improving Martini 3 for disordered and multidomain proteins , 2021, bioRxiv.

[7]  D. Tieleman,et al.  The ugly, bad, and good stories of large-scale biomolecular simulations. , 2022, Current opinion in structural biology.

[8]  M. Leser,et al.  Directed Discovery of Tetrapeptide Emulsifiers , 2022, Frontiers in Chemistry.

[9]  Anna L. Duncan,et al.  PyLipID: A Python Package for Analysis of Protein–Lipid Interactions from Molecular Dynamics Simulations , 2021, bioRxiv.

[10]  Benjamin J. Wylie,et al.  A Cholesterol Dimer Stabilizes the Inactivated State of an Inward-rectifier Potassium Channel. , 2022, Angewandte Chemie.

[11]  G. Tolufashe,et al.  SuPepMem: A database of innate immune system peptides and their cell membrane interactions , 2022, Computational and structural biotechnology journal.

[12]  E. Tajkhorshid,et al.  Assembly and Analysis of Cell-Scale Membrane Envelopes , 2021, J. Chem. Inf. Model..

[13]  Charly Empereur-mot,et al.  Automatic multi-objective optimization of coarse-grained lipid force fields using SwarmCG. , 2021, The Journal of chemical physics.

[14]  Paulo C. T. Souza,et al.  Polyply; a python suite for facilitating simulations of macromolecules and nanomaterials , 2021, Nature communications.

[15]  Helgi I. Ingólfsson,et al.  Machine learning–driven multiscale modeling reveals lipid-dependent dynamics of RAS signaling proteins , 2020, Proceedings of the National Academy of Sciences.

[16]  Ying Li,et al.  Integration of Machine Learning and Coarse-Grained Molecular Simulations for Polymer Materials: Physical Understandings and Molecular Design , 2022, Frontiers in Chemistry.

[17]  C. Turner,et al.  Martini Coarse-Grained Model for Poly(alkylimidazolium) Ionenes and Applications in Aromatic Compound Extraction , 2021, Macromolecules.

[18]  Jeffery B. Klauda,et al.  All-Atom Modeling of Complex Cellular Membranes. , 2021, Langmuir : the ACS journal of surfaces and colloids.

[19]  Per Larsson,et al.  Explicit-pH Coarse-Grained Molecular Dynamics Simulations Enable Insights into Restructuring of Intestinal Colloidal Aggregates with Permeation Enhancers , 2021, Processes.

[20]  D. Müller,et al.  Lipids and Phosphorylation Conjointly Modulate Complex Formation of β2-Adrenergic Receptor and β-arrestin2 , 2021, Frontiers in Cell and Developmental Biology.

[21]  Adolfo B Poma,et al.  Mapping Mechanostable Pulling Geometries of a Therapeutic Anticalin/CTLA-4 Protein Complex , 2021, Nano letters.

[22]  Paulo C. T. Souza,et al.  Martini 3 Coarse-Grained Model for Type III Deep Eutectic Solvents: Thermodynamic, Structural, and Extraction Properties , 2021, ACS Sustainable Chemistry & Engineering.

[23]  I. Dryden,et al.  GLIMPS: A Machine Learning Approach to Resolution Transformation for Multiscale Modeling. , 2021, Journal of chemical theory and computation.

[24]  A. H. Vries,et al.  How the Choice of Force-Field Affects the Stability and Self-Assembly Process of Supramolecular CTA Fibers , 2021, Journal of chemical theory and computation.

[25]  Jun Soo Kim,et al.  Potential of Mean Force for DNA Wrapping Around a Cationic Nanoparticle. , 2021, Journal of chemical theory and computation.

[26]  J. Hub,et al.  Free energies of membrane stalk formation from a lipidomics perspective , 2021, Nature Communications.

[27]  F. Chen,et al.  Bioactive scaffolds with enhanced supramolecular motion promote recovery from spinal cord injury , 2021, Science.

[28]  M. Wilson,et al.  Molecular simulation studies of self-assembly for a chromonic perylene dye: all-atom studies and new approaches to coarse-graining , 2021, Journal of Molecular Liquids.

[29]  Structure of the hexameric fungal plasma membrane proton pump in its autoinhibited state , 2021, Science advances.

[30]  Frieda A. Sorgenfrei,et al.  Kinetic and structural roles for the surface in guiding SAS-6 self-assembly to direct centriole architecture , 2021, Nature Communications.

[31]  L. Rems,et al.  Identification of electroporation sites in the complex lipid organization of the plasma membrane , 2021, bioRxiv.

[32]  T. Ha-Duong,et al.  Supramolecular Organization of Polymer Prodrug Nanoparticles Revealed by Coarse-Grained Simulations. , 2021, Journal of the American Chemical Society.

[33]  M. Olvera de la Cruz,et al.  A Modeling-Based Design to Engineering Protein Hydrogels with Random Copolymers. , 2021, ACS nano.

[34]  Albert S. Thie,et al.  Sequential Voxel-Based Leaflet Segmentation of Complex Lipid Morphologies , 2021, Journal of chemical theory and computation.

[35]  F. Stellacci,et al.  Amphiphilic nanoparticles generate curvature in lipid membranes and shape liposome–liposome interfaces , 2021, Nanoscale.

[36]  Michael A. Webb,et al.  Chemically specific coarse‐graining of polymers: Methods and prospects , 2021, Journal of Polymer Science.

[37]  P. Coveney,et al.  Principles of Small-Molecule Transport through Synthetic Nanopores. , 2021, ACS nano.

[38]  D. Tieleman,et al.  Supramolecular Organization of SARS-CoV and SARS-CoV-2 Virions Revealed by Coarse-Grained Models of Intact Virus Envelopes , 2021, bioRxiv.

[39]  G. Kwon,et al.  Gold nanoparticles in virus detection: Recent advances and potential considerations for SARS‐CoV‐2 testing development , 2021, Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology.

[40]  G. Rossi,et al.  A Martini Coarse Grained Model of Citrate-Capped Gold Nanoparticles Interacting with Lipid Bilayers , 2021, Journal of chemical theory and computation.

[41]  Mark A. Miller,et al.  Automated Coarse-Grained Mapping Algorithm for the Martini Force Field and Benchmarks for Membrane–Water Partitioning , 2021, Journal of chemical theory and computation.

[42]  F. Stellacci,et al.  Cholesterol Hinders the Passive Uptake of Amphiphilic Nanoparticles into Fluid Lipid Membranes , 2021, The journal of physical chemistry letters.

[43]  S. Marrink,et al.  Nonconverged Constraints Cause Artificial Temperature Gradients in Lipid Bilayer Simulations , 2021, The journal of physical chemistry. B.

[44]  Riccardo Alessandri,et al.  Martini 3 Coarse‐Grained Force Field: Small Molecules , 2021, Advanced Theory and Simulations.

[45]  L. Cantu',et al.  Polystyrene perturbs the structure, dynamics, and mechanical properties of DPPC membranes: An experimental and computational study. , 2021, Journal of colloid and interface science.

[46]  B. Poolman,et al.  Membrane thickness, lipid phase and sterol type are determining factors in the permeability of membranes to small solutes , 2021, Nature Communications.

[47]  H. Risselada,et al.  Quantifying Membrane Curvature Sensing of Peripheral Proteins by Simulated Buckling and Umbrella Sampling. , 2021, Journal of chemical theory and computation.

[48]  E. Stavrinidou,et al.  Water Intake and Ion Exchange in PEDOT:Tos Films upon Cyclic Voltammetry: Experimental and Molecular Dynamics Investigation , 2021, Macromolecules.

[49]  Anna L. Duncan,et al.  Modulation of adenosine A2a receptor oligomerization by receptor activation and PIP2 interactions , 2021, Structure.

[50]  Paulo C. T. Souza,et al.  Improved Parameterization of Phosphatidylinositide Lipid Headgroups for the Martini 3 Coarse-Grain Force Field. , 2021, Journal of chemical theory and computation.

[51]  R. Potestio,et al.  From System Modeling to System Analysis: The Impact of Resolution Level and Resolution Distribution in the Computer-Aided Investigation of Biomolecules , 2021, Frontiers in Molecular Biosciences.

[52]  M. Sansom,et al.  Relative Affinities of Protein–Cholesterol Interactions from Equilibrium Molecular Dynamics Simulations , 2021, bioRxiv.

[53]  P. Pompa,et al.  Association Mechanism of Peptide-Coated Metal Nanoparticles with Model Membranes: A Coarse-Grained Study , 2021, Journal of chemical theory and computation.

[54]  Tsjerk A. Wassenaar,et al.  General Protocol for Constructing Molecular Models of Nanodiscs , 2021, J. Chem. Inf. Model..

[55]  Pim W. J. M. Frederix,et al.  Coacervate formation studied by explicit solvent coarse-grain molecular dynamics with the Martini model , 2021, Chemical science.

[56]  A. Bonvin 50 years of PBD: a catalyst in structural biology. , 2021, Nature methods.

[57]  Integrating experiments, theory and simulations into whole-cell models. , 2021, Nature methods.

[58]  Z. Cournia,et al.  Evaluating the Efficiency of the Martini Force Field to Study Protein Dimerization in Aqueous and Membrane Environments. , 2021, Journal of chemical theory and computation.

[59]  T. Ouldridge,et al.  A Primer on the oxDNA Model of DNA: When to Use it, How to Simulate it and How to Interpret the Results , 2021, Frontiers in Molecular Biosciences.

[60]  Peer-Timo Bremer,et al.  Machine-learning-based dynamic-importance sampling for adaptive multiscale simulations , 2021, Nature Machine Intelligence.

[61]  Tsjerk A. Wassenaar,et al.  Asymmetric CorA Gating Mechanism as Observed by Molecular Dynamics Simulations , 2021, J. Chem. Inf. Model..

[62]  Shantenu Jha,et al.  AI-driven multiscale simulations illuminate mechanisms of SARS-CoV-2 spike dynamics , 2021, Int. J. High Perform. Comput. Appl..

[63]  Ivo Kabelka,et al.  Advances in Molecular Understanding of α-Helical Membrane-Active Peptides. , 2021, Accounts of chemical research.

[64]  Bart M. H. Bruininks,et al.  Martini 3: a general purpose force field for coarse-grained molecular dynamics , 2021, Nature Methods.

[65]  Paulo C. T. Souza,et al.  Perspectives on High-Throughput Ligand/Protein Docking With Martini MD Simulations , 2021, Frontiers in Molecular Biosciences.

[66]  P. Stansfeld,et al.  CG2AT2: an Enhanced Fragment-Based Approach for Serial Multi-scale Molecular Dynamics Simulations , 2021, bioRxiv.

[67]  Alexander J. Bryer,et al.  Full scale structural, mechanical and dynamical properties of HIV-1 liposomes , 2021, bioRxiv.

[68]  S. Gnanakaran,et al.  Development of Martini 2.2 parameters for N-glycans: A case study of the HIV-1 Env glycoprotein dynamics. , 2021, Glycobiology.

[69]  Anna L. Duncan,et al.  Identification and assessment of cardiolipin interactions with E. coli inner membrane proteins , 2021, Science Advances.

[70]  J. Straub,et al.  Addressing the Excessive Aggregation of Membrane Proteins in the MARTINI Model. , 2021, Journal of chemical theory and computation.

[71]  S. Marrink,et al.  Simulating realistic membrane shapes. , 2021, Current opinion in cell biology.

[72]  M. O’Mara,et al.  The role of plasmalogens, Forssman lipids, and sphingolipid hydroxylation in modulating the biophysical properties of the epithelial plasma membrane. , 2021, The Journal of chemical physics.

[73]  D. Tieleman,et al.  Lipid regulation of hERG1 channel function , 2021, Nature Communications.

[74]  Adolfo B Poma,et al.  Optimizing Gō-MARTINI Coarse-Grained Model for F-BAR Protein on Lipid Membrane , 2021, Frontiers in Molecular Biosciences.

[75]  Kuan-Hsuan Shen,et al.  Molecular Dynamics Simulations of Ion-Containing Polymers Using Generic Coarse-Grained Models , 2021 .

[76]  Peter Tieleman,et al.  ProLint: a web-based framework for the automated data analysis and visualization of lipid–protein interactions , 2021, Nucleic Acids Res..

[77]  Shyam M. Saladi,et al.  Moltemplate: A Tool for Coarse-Grained Modeling of Complex Biological Matter and Soft Condensed Matter Physics. , 2021, Journal of molecular biology.

[78]  M. Doxastakis,et al.  Dynamics and Rheology of Polymer Melts via Hierarchical Atomistic, Coarse-Grained, and Slip-Spring Simulations , 2021, Macromolecules.

[79]  E. Ikonen,et al.  Seipin traps triacylglycerols to facilitate their nanoscale clustering in the endoplasmic reticulum membrane. , 2021, PLoS biology.

[80]  G. Voth,et al.  Coarse-Grained Force Fields from the Perspective of Statistical Mechanics: Better Understanding of the Origins of a MARTINI Hangover , 2021, Journal of chemical theory and computation.

[81]  Filipe M. Sousa,et al.  Coarse-Grained Parameterization of Nucleotide Cofactors and Metabolites: Protonation Constants, Partition Coefficients, and Model Topologies , 2021, J. Chem. Inf. Model..

[82]  S. Marrink,et al.  The Martini Model in Materials Science , 2020, Advanced materials.

[83]  L. Ghiringhelli,et al.  Data-driven equation for drug-membrane permeability across drugs and membranes. , 2020, The Journal of chemical physics.

[84]  R. Schneiter,et al.  Seipin accumulates and traps diacylglycerols and triglycerides in its ring-like structure , 2020, Proceedings of the National Academy of Sciences.

[85]  S. Vanni,et al.  Estimating the accuracy of the MARTINI model towards the investigation of peripheral protein-membrane interactions. , 2020, Faraday discussions.

[86]  S. Marrink,et al.  Complex nanoemulsion for vitamin delivery: droplet organization and interaction with skin membranes , 2021, Nanoscale.

[87]  M. O’Mara,et al.  Investigating the lipid fingerprint of SLC6 neurotransmitter transporters: a comparison of dDAT, hDAT, hSERT, and GlyT2. , 2021, BBA advances.

[88]  N. Jackson Coarse-Graining Organic Semiconductors: The Path to Multiscale Design. , 2020, The journal of physical chemistry. B.

[89]  P. Rothemund,et al.  Properties of DNA- and Protein-Scaffolded Lipid Nanodiscs. , 2020, ACS nano.

[90]  H. Grubmüller,et al.  How proteins open fusion pores: insights from molecular simulations , 2020, European biophysics journal : EBJ.

[91]  Davide Bochicchio,et al.  Swarm-CG: Automatic Parametrization of Bonded Terms in MARTINI-Based Coarse-Grained Models of Simple to Complex Molecules via Fuzzy Self-Tuning Particle Swarm Optimization , 2020, ACS omega.

[92]  Sergio Pantano,et al.  CGMD Platform: Integrated Web Servers for the Preparation, Running, and Analysis of Coarse-Grained Molecular Dynamics Simulations , 2020, Molecules.

[93]  L. De Cola,et al.  Solvent‐Driven Supramolecular Wrapping of Self‐Assembled Structures , 2020, Angewandte Chemie.

[94]  F. Förster,et al.  Structure of the Human Signal Peptidase Complex Reveals the Determinants for Signal Peptide Cleavage , 2020, bioRxiv.

[95]  Sanket A. Deshmukh,et al.  A review of advancements in coarse-grained molecular dynamics simulations , 2020, Molecular Simulation.

[96]  T. Bereau Computational compound screening of biomolecules and soft materials by molecular simulations , 2020, Modelling and Simulation in Materials Science and Engineering.

[97]  Elena E. Dormidontova,et al.  Chain Conformation and Hydration of Polyethylene Oxide Grafted to Gold Nanoparticles: Curvature and Chain Length Effect , 2020 .

[98]  F. Stellacci,et al.  Amphiphilic gold nanoparticles perturb phase separation in multidomain lipid membranes. , 2020, Nanoscale.

[99]  W G Noid,et al.  Exploring the landscape of model representations , 2020, Proceedings of the National Academy of Sciences.

[100]  G. Hummer,et al.  Reconstitution of autophagosome nucleation defines Atg9 vesicles as seeds for membrane formation , 2020, Science.

[101]  S. Marrink,et al.  Piezo1 Forms Specific, Functionally Important Interactions with Phosphoinositides and Cholesterol. , 2020, Biophysical journal.

[102]  A. Thiam,et al.  Triacylglycerols sequester monotopic membrane proteins to lipid droplets , 2020, Nature Communications.

[103]  Yi Wang,et al.  Scalable molecular dynamics on CPU and GPU architectures with NAMD. , 2020, The Journal of chemical physics.

[104]  M. Fahlman,et al.  Microscopic Understanding of the Granular Structure and the Swelling of PEDOT:PSS , 2020 .

[105]  Riccardo Alessandri,et al.  Protein–ligand binding with the coarse-grained Martini model , 2020, Nature Communications.

[106]  Felice C Lightstone,et al.  ddcMD: A fully GPU-accelerated molecular dynamics program for the Martini force field. , 2020, The Journal of chemical physics.

[107]  Frank Noé,et al.  Coarse graining molecular dynamics with graph neural networks. , 2020, The Journal of chemical physics.

[108]  Brian Jiménez-García,et al.  Integrative modeling of membrane-associated protein assemblies , 2020, Nature Communications.

[109]  Paulo C. T. Souza,et al.  Titratable Martini model for constant pH simulations. , 2020, The Journal of chemical physics.

[110]  Chandra S Verma,et al.  Extending the Martini Coarse-Grained Force Field to N-Glycans , 2020, J. Chem. Inf. Model..

[111]  K. Ayappa,et al.  Developing a Coarse-Grained Model for Bacterial Cell Walls and Evaluating Mechanical Properties and Free Energy Barriers. , 2020, Journal of chemical theory and computation.

[112]  S. Marrink,et al.  Coupling Coarse-Grained to Fine-Grained Models via Hamiltonian Replica Exchange , 2020, Journal of chemical theory and computation.

[113]  G. Schatz,et al.  Supramolecular–covalent hybrid polymers for light-activated mechanical actuation , 2020, Nature Materials.

[114]  Benjamin P. Cossins,et al.  Membrane Interactions of α-Synuclein Revealed by Multiscale Molecular Dynamics Simulations, Markov State Models, and NMR , 2020, bioRxiv.

[115]  I. Zozoulenko,et al.  Large scale mobility calculations in PEDOT (Poly(3,4-ethylenedioxythiophene)): Backmapping the coarse-grained MARTINI morphology , 2020 .

[116]  Roland G. Huber,et al.  Computational modelling of flavivirus dynamics: The ins and outs , 2020, Methods.

[117]  Zidong Wei,et al.  Self‐Aggregation to Construct Hydroxide Highways in Anion Exchange Membranes , 2020, Advanced Materials Interfaces.

[118]  Paulo C. T. Souza,et al.  Martini Coarse-Grained Models of Imidazolium-Based Ionic Liquids: From Nanostructural Organization to Liquid-Liquid Extraction , 2020, Green Chemistry.

[119]  S. Marrink,et al.  Resolving Donor–Acceptor Interfaces and Charge Carrier Energy Levels of Organic Semiconductors with Polar Side Chains , 2020, Advanced Functional Materials.

[120]  S. Marrink,et al.  Localization Preference of Antimicrobial Peptides on Liquid-Disordered Membrane Domains , 2020, Frontiers in Cell and Developmental Biology.

[121]  R. Elber,et al.  Computer simulations of a heterogeneous membrane with enhanced sampling techniques , 2020, The Journal of chemical physics.

[122]  B. Bouvier,et al.  New biobased-zwitterionic ionic liquids: efficiency and biocompatibility for the development of sustainable biorefinery processes , 2020 .

[123]  S. Marrink,et al.  Backmapping triangulated surfaces to coarse-grained membrane models , 2020, Nature Communications.

[124]  A. Alexander-Katz,et al.  Understanding the synergistic effect of physicochemical properties of nanoparticles and their cellular entry pathways , 2020, Communications Biology.

[125]  L. Monticelli,et al.  Size-dependent aggregation of hydrophobic nanoparticles in lipid membranes. , 2020, Nanoscale.

[126]  M. Cascella,et al.  Dispersion state phase diagram of citrate-coated metallic nanoparticles in saline solutions , 2020, Nature Communications.

[127]  Dual Resolution Membrane Simulations Using Virtual Sites , 2020, The journal of physical chemistry. B.

[128]  J. Coutinho,et al.  Improved coarse-grain model to unravel the phase behavior of 1-alkyl-3-methylimidazolium-based ionic liquids through molecular dynamics simulations. , 2020, Journal of colloid and interface science.

[129]  Helgi I. Ingólfsson,et al.  A molecular view on the escape of lipoplexed DNA from the endosome , 2020, eLife.

[130]  Rongjun Chen,et al.  Fats’ Love–Hate Relationships: A Molecular Dynamics Simulation and Hands-On Experiment Outreach Activity to Introduce the Amphiphilic Nature and Biological Functions of Lipids to Young Students and the General Public , 2020 .

[131]  Paulo C. T. Souza,et al.  Membrane mediated toppling mechanism of the folate energy coupling factor transporter , 2020, Nature Communications.

[132]  Siewert J Marrink,et al.  Molecular mechanism for bidirectional regulation of CD44 for lipid raft affiliation by palmitoylations and PIP2 , 2020, PLoS Comput. Biol..

[133]  Sarit S. Agasti,et al.  Self-Sorted, Random and Block Supramolecular Co-polymers via Sequence Controlled, Multicomponent Self-Assembly. , 2020, Journal of the American Chemical Society.

[134]  Anna L. Duncan,et al.  Defining how multiple lipid species interact with inward rectifier potassium (Kir2) channels , 2020, Proceedings of the National Academy of Sciences.

[135]  Besian I. Sejdiu,et al.  Lipid-Protein Interactions Are a Unique Property and Defining Feature of G Protein-Coupled Receptors. , 2020, Biophysical journal.

[136]  Timothy S. Carpenter,et al.  Decoupling copolymer, lipid and carbon nanotube interactions in hybrid, biomimetic vesicles. , 2020, Nanoscale.

[137]  G. Koenderink,et al.  Charge-dependent interactions of monomeric and filamentous actin with lipid bilayers , 2020, Proceedings of the National Academy of Sciences.

[138]  Paulo C. T. Souza,et al.  Capturing Choline–Aromatics Cation−π Interactions in the MARTINI Force Field , 2020, Journal of chemical theory and computation.

[139]  Rommie E. Amaro,et al.  Mesoscale All-Atom Influenza Virus Simulations Suggest New Substrate Binding Mechanism , 2020, ACS central science.

[140]  S. Khalid,et al.  Atomistic and Coarse-Grained Simulations of Membrane Proteins: A Practical Guide. , 2020, Methods.

[141]  Gianvito Grasso,et al.  Molecular and Coarse-Grained Modeling to Characterize and Optimize Dendrimer-Based Nanocarriers for Short Interfering RNA Delivery , 2020, ACS omega.

[142]  R. Best,et al.  Multiple lipid binding sites determine the affinity of PH domains for phosphoinositide-containing membranes , 2020, Science Advances.

[143]  T. Tokumasu,et al.  Nafion Ionomer Dispersion in Mixtures of 1‐Propanol and Water Based on the Martini Coarse‐Grained Model , 2020 .

[144]  P. Kasson,et al.  Influenza hemagglutinin drives viral entry via two sequential intramembrane mechanisms , 2020, Proceedings of the National Academy of Sciences.

[145]  Roland G Huber,et al.  Multiscale modelling and simulation of viruses. , 2020, Current opinion in structural biology.

[146]  D. Tieleman,et al.  Phase Separation in Atomistic Simulations of Model Membranes. , 2020, Journal of the American Chemical Society.

[147]  S. Khalid,et al.  To infect or not to infect: molecular determinants of bacterial outer membrane vesicle internalization by host membranes. , 2020, Journal of molecular biology.

[148]  A. Nash,et al.  The aggregation of striped nanoparticles in mixed phospholipid bilayers. , 2019, Nanoscale.

[149]  A. Chattopadhyay,et al.  Role of Cholesterol-mediated Effects in GPCR Heterodimers. , 2019, Chemistry and physics of lipids.

[150]  L. Forrest,et al.  Large-scale state-dependent membrane remodeling by a transporter protein , 2019, eLife.

[151]  An Allosteric Pathway in SOD1 Unravels the Molecular Mechanism of the G93A ALS-Linked Mutation. , 2019, The journal of physical chemistry letters.

[152]  S. Vanni,et al.  To Bud or Not to Bud: A Perspective on Molecular Simulations of Lipid Droplet Budding , 2019, Front. Mol. Biosci..

[153]  Marc Baaden,et al.  Modelling lipid systems in fluid with Lattice Boltzmann Molecular Dynamics simulations and hydrodynamics , 2019, Scientific Reports.

[154]  K. Schulten,et al.  Atoms to Phenotypes: Molecular Design Principles of Cellular Energy Metabolism , 2019, Cell.

[155]  G. Hummer,et al.  Phospholipid Scramblases Remodel the Shape of Asymmetric Membranes. , 2019, The journal of physical chemistry letters.

[156]  S. Nangia,et al.  Obtaining Protein Association Energy Landscape (PANEL) for Integral Membrane Proteins. , 2019, Journal of chemical theory and computation.

[157]  Alexandre M. J. J. Bonvin,et al.  MARTINI-Based Protein-DNA Coarse-Grained HADDOCKing , 2019, Front. Mol. Biosci..

[158]  Peer-Timo Bremer,et al.  MemSurfer: A Tool for Robust Computation and Characterization of Curved Membranes. , 2019, Journal of chemical theory and computation.

[159]  S. Gnanakaran,et al.  Unsupervised Machine Learning for Analysis of Phase Separation in Ternary Lipid Mixture. , 2019, Journal of chemical theory and computation.

[160]  S. Pantano,et al.  Fat SIRAH: Coarse-grained phospholipids to explore membrane-protein dynamics. , 2019, Journal of chemical theory and computation.

[161]  P. Malfreyt,et al.  Development of a coarse-grain model for the description of the metal oxide-polymer interface from a bottom-up approach , 2019, The Journal of Chemical Physics.

[162]  Changduk Yang,et al.  Insights into constitutional isomeric effects on donor–acceptor intermolecular arrangements in non-fullerene organic solar cells , 2019, Journal of Materials Chemistry A.

[163]  J. Coutinho,et al.  Rationalizing the Phase Behavior of Triblock Copolymers through Experiments and Molecular Simulations , 2019, The Journal of Physical Chemistry C.

[164]  Nidhi Singh,et al.  Recent Advances in Coarse-Grained Models for Biomolecules and Their Applications , 2019, International journal of molecular sciences.

[165]  W. V. Gunsteren The Roots of Bio‐Molecular Simulation: The Eight‐Week CECAM Workshop ‘Models for Protein Dynamics’ of 1976 , 2019, Helvetica Chimica Acta.

[166]  João P. G. L. M. Rodrigues,et al.  Less Is More: Coarse-Grained Integrative Modeling of Large Biomolecular Assemblies with HADDOCK , 2019, bioRxiv.

[167]  S. Marrink,et al.  A Multi-Scale Approach to Membrane Remodeling Processes , 2019, Front. Mol. Biosci..

[168]  Alexander J. Pak,et al.  Understanding Missing Entropy in Coarse-Grained Systems: Addressing Issues of Representability and Transferability. , 2019, The journal of physical chemistry letters.

[169]  S. Marrink,et al.  Nucleation Mechanisms of Self-Assembled Physisorbed Monolayers on Graphite , 2019, The Journal of Physical Chemistry C.

[170]  Tristan Bereau,et al.  Resolution limit of data-driven coarse-grained models spanning chemical space. , 2019, The Journal of chemical physics.

[171]  Pedro Carvalho,et al.  Membrane Asymmetry Imposes Directionality on Lipid Droplet Emergence from the ER. , 2019, Developmental Cell.

[172]  Birgit Strodel,et al.  Large-scale, dynamin-like motions of the human guanylate binding protein 1 revealed by multi-resolution simulations , 2019, bioRxiv.

[173]  G. Hummer,et al.  Membrane perforation by the pore-forming toxin pneumolysin , 2019, Proceedings of the National Academy of Sciences.

[174]  M. Sansom,et al.  Insights into Membrane Protein–Lipid Interactions from Free Energy Calculations , 2019, bioRxiv.

[175]  Matej Praprotnik,et al.  SWINGER: a clustering algorithm for concurrent coupling of atomistic and supramolecular liquids , 2019, Interface Focus.

[176]  G. Hummer,et al.  Curvature induction and membrane remodeling by FAM134B reticulon homology domain assist selective ER-phagy , 2019, Nature Communications.

[177]  A. Giorgetti,et al.  MERMAID: dedicated web server to prepare and run coarse-grained membrane protein dynamics , 2019, Nucleic Acids Res..

[178]  M. Hof,et al.  Effect of helical kink in antimicrobial peptides on membrane pore formation , 2019, bioRxiv.

[179]  Paulo C. T. Souza,et al.  Pitfalls of the Martini Model , 2019, Journal of chemical theory and computation.

[180]  I. Zozoulenko,et al.  Computational Microscopy of PEDOT:PSS/Cellulose Composite Paper , 2019, ACS Applied Energy Materials.

[181]  Ilpo Vattulainen,et al.  Reduced level of docosahexaenoic acid shifts GPCR neuroreceptors to less ordered membrane regions , 2019, PLoS Comput. Biol..

[182]  S. Marrink,et al.  Ceramides bind VDAC2 to trigger mitochondrial apoptosis , 2019, Nature Communications.

[183]  Pascal Friederich,et al.  Toward Design of Novel Materials for Organic Electronics , 2019, Advanced materials.

[184]  E. Tajkhorshid,et al.  Characterization of Lipid-Protein Interactions and Lipid-Mediated Modulation of Membrane Protein Function through Molecular Simulation. , 2019, Chemical reviews.

[185]  S. Khalid,et al.  Role of O-Antigen in Response to Mechanical Stress of the E. coli Outer Membrane: Insights from Coarse-Grained MD Simulations. , 2019, The journal of physical chemistry. B.

[186]  Krishna Rajan,et al.  New frontiers for the materials genome initiative , 2019, npj Computational Materials.

[187]  S. Marrink,et al.  Lipid Fingerprints and Cofactor Dynamics of Light-Harvesting Complex II in Different Membranes. , 2019, Biophysical journal.

[188]  R. Reigada,et al.  Interaction modes between nanosized graphene flakes and liposomes: Adsorption, insertion and membrane fusion. , 2019, Biochimica et biophysica acta. General subjects.

[189]  I. Zozoulenko,et al.  Computational microscopy study of the granular structure and pH dependence of PEDOT:PSS. , 2019, Physical Chemistry, Chemical Physics - PCCP.

[190]  I. Vattulainen,et al.  Multiscale Simulations of Biological Membranes: The Challenge To Understand Biological Phenomena in a Living Substance , 2019, Chemical reviews.

[191]  Ville R. I. Kaila,et al.  How cardiolipin modulates the dynamics of respiratory complex I , 2019, Science Advances.

[192]  S. Pantano,et al.  The SIRAH 2.0 Force Field: Altius, Fortius, Citius. , 2019, Journal of chemical theory and computation.

[193]  H. Steinhoff,et al.  Styrene/Maleic Acid Copolymers Form SMALPs by Pulling Lipid Patches out of the Lipid Bilayer. , 2019, Langmuir : the ACS journal of surfaces and colloids.

[194]  Besian I. Sejdiu,et al.  Emerging Diversity in Lipid–Protein Interactions , 2019, Chemical reviews.

[195]  J. Pedersen,et al.  Curvature-driven adsorption of cationic nanoparticles to phase boundaries in multicomponent lipid bilayers. , 2019, Nanoscale.

[196]  Xueyan Cao,et al.  Bottlebrush-architectured poly(ethylene glycol) as an efficient vector for RNA interference in vivo , 2019, Science Advances.

[197]  J. Sturgis,et al.  The lipid environment of Escherichia coli Aquaporin Z. , 2019, Biochimica et biophysica acta. Biomembranes.

[198]  H. Risselada,et al.  Thermodynamically reversible paths of the first fusion intermediate reveal an important role for membrane anchors of fusion proteins , 2019, Proceedings of the National Academy of Sciences.

[199]  L. Monticelli,et al.  Role of Ligand Conformation on Nanoparticle–Protein Interactions , 2019, The journal of physical chemistry. B.

[200]  F. J. Irudayanathan,et al.  Palmitoylation of Claudin-5 Proteins Influences Their Lipid Domain Affinity and Tight Junction Assembly at the Blood-Brain Barrier Interface. , 2019, The journal of physical chemistry. B.

[201]  D. Sengupta,et al.  Interplay between Membrane Curvature and Cholesterol: Role of Palmitoylated Caveolin-1. , 2019, Biophysical journal.

[202]  Sangjae Seo,et al.  SPICA Force Field for Lipid Membranes: Domain Formation Induced by Cholesterol. , 2018, Journal of chemical theory and computation.

[203]  Mark S. P. Sansom,et al.  The MemProtMD database: a resource for membrane-embedded protein structures and their lipid interactions , 2018, Nucleic Acids Res..

[204]  T. Bereau,et al.  Drug–Membrane Permeability across Chemical Space , 2018, ACS central science.

[205]  Helgi I. Ingólfsson,et al.  Computational Modeling of Realistic Cell Membranes , 2019, Chemical reviews.

[206]  Mark S P Sansom,et al.  Computational Virology: Molecular Simulations of Virus Dynamics and Interactions. , 2019, Advances in experimental medicine and biology.

[207]  C. Camilloni,et al.  Martini bead form factors for nucleic-acids and their application in the refinement of protein/nucleic-acid complexes against SAXS data , 2018, bioRxiv.

[208]  M. Lindau,et al.  Molecular mechanism of fusion pore formation driven by the neuronal SNARE complex , 2018, Proceedings of the National Academy of Sciences.

[209]  Thomas D. Newport,et al.  The structural basis of lipid scrambling and inactivation in the endoplasmic reticulum scramblase TMEM16K , 2018, Nature Communications.

[210]  T. Huber,et al.  DNA-Encircled Lipid Bilayers , 2018, bioRxiv.

[211]  G. Hummer,et al.  Molecular dynamics simulations of carbon nanotube porins in lipid bilayers. , 2018, Faraday discussions.

[212]  Felice C Lightstone,et al.  Capturing Phase Behavior of Ternary Lipid Mixtures with a Refined Martini Coarse-Grained Force Field. , 2018, Journal of chemical theory and computation.

[213]  Ron O. Dror,et al.  Molecular Dynamics Simulation for All , 2018, Neuron.

[214]  M. Chavent,et al.  Cholesterol Interaction Sites on the Transmembrane Domain of the Hedgehog Signal Transducer and Class F G Protein-Coupled Receptor Smoothened , 2018, bioRxiv.

[215]  G. Pavan,et al.  A Block Supramolecular Polymer and Its Kinetically Enhanced Stability. , 2018, Journal of the American Chemical Society.

[216]  Anna L. Duncan,et al.  How nanoscale protein interactions determine the mesoscale dynamic organisation of bacterial outer membrane proteins , 2018, Nature Communications.

[217]  J. Smiatek,et al.  A polarizable MARTINI model for monovalent ions in aqueous solution. , 2018, The Journal of chemical physics.

[218]  C. Robinson,et al.  State-dependent Lipid Interactions with the A2a Receptor Revealed by MD Simulations Using In Vivo-Mimetic Membranes , 2018, bioRxiv.

[219]  S. Marrink,et al.  Transferable MARTINI Model of Poly(ethylene Oxide). , 2018, The journal of physical chemistry. B.

[220]  R. Elber,et al.  A mixed alchemical and equilibrium dynamics to simulate heterogeneous dense fluids: Illustrations for Lennard-Jones mixtures and phospholipid membranes. , 2018, The Journal of chemical physics.

[221]  Fabrizio Gelain,et al.  Elucidating Self‐Assembling Peptide Aggregation via Morphoscanner: A New Tool for Protein‐Peptide Structural Characterization , 2018, Advanced science.

[222]  Wanlin Guo,et al.  Molecular Mechanism of Lipid Nanodisk Formation by Styrene-Maleic Acid Copolymers , 2018, Biophysical journal.

[223]  Juan M. R. Albano,et al.  Mechanical properties of drug loaded diblock copolymer bilayers: A molecular dynamics study. , 2018, The Journal of chemical physics.

[224]  Helgi I. Ingólfsson,et al.  Curvature‐Induced Sorting of Lipids in Plasma Membrane Tethers , 2018, Advanced Theory and Simulations.

[225]  Andreas Plückthun,et al.  PIP2 stabilises active states of GPCRs and enhances the selectivity of G-protein coupling , 2018, Nature.

[226]  S. Marrink,et al.  Molecular Dynamics of the Association of L-Selectin and FERM Regulated by PIP2. , 2018, Biophysical journal.

[227]  A. Gorfe,et al.  Protein Partitioning into Ordered Membrane Domains: Insights from Simulations. , 2018, Biophysical journal.

[228]  Siewert J. Marrink,et al.  Molecular simulations of self-assembling bio-inspired supramolecular systems and their connection to experiments , 2018, Chemical Society reviews.

[229]  A. Chattopadhyay,et al.  Exploring GPCR-Lipid Interactions by Molecular Dynamics Simulations: Excitements, Challenges, and the Way Forward. , 2018, The journal of physical chemistry. B.

[230]  G. Hummer,et al.  Hydrodynamics of Diffusion in Lipid Membrane Simulations. , 2018, Physical review letters.

[231]  S. Panzuela,et al.  Solvent Hydrodynamics Enhances the Collective Diffusion of Membrane Lipids. , 2018, Physical review letters.

[232]  Paulo C. T. Souza,et al.  Enhancing Molecular n‐Type Doping of Donor–Acceptor Copolymers by Tailoring Side Chains , 2018, Advanced materials.

[233]  Vijay S Pande,et al.  Communication: Adaptive boundaries in multiscale simulations. , 2018, The Journal of chemical physics.

[234]  D. Tieleman,et al.  Modulating interactions between ligand-coated nanoparticles and phase-separated lipid bilayers by varying the ligand density and the surface charge. , 2018, Nanoscale.

[235]  Birgit Schiøtt,et al.  A direct interaction of cholesterol with the dopamine transporter prevents its out-to-inward transition , 2018, PLoS Comput. Biol..

[236]  Helgi I. Ingólfsson,et al.  Lipid–Protein Interactions Are Unique Fingerprints for Membrane Proteins , 2017, bioRxiv.

[237]  Pim W. J. M. Frederix,et al.  Prediction of Thylakoid Lipid Binding Sites on Photosystem II , 2017, Biophysical journal.

[238]  D. Tieleman,et al.  Parameterization of Palmitoylated Cysteine, Farnesylated Cysteine, Geranylgeranylated Cysteine, and Myristoylated Glycine for the Martini Force Field. , 2017, The journal of physical chemistry. B.

[239]  Siewert J. Marrink,et al.  cgHeliParm: analysis of dsDNA helical parameters for coarse-grained MARTINI molecular dynamics simulations , 2017, Bioinform..

[240]  I. Vattulainen,et al.  Excessive aggregation of membrane proteins in the Martini model , 2017, PloS one.

[241]  Peer-Timo Bremer,et al.  Computational Lipidomics of the Neuronal Plasma Membrane , 2017, Biophysical journal.

[242]  Jumin Lee,et al.  CHARMM‐GUI Martini Maker for modeling and simulation of complex bacterial membranes with lipopolysaccharides , 2017, J. Comput. Chem..

[243]  Yasuhiro Matsunaga,et al.  GENESIS 1.1: A hybrid‐parallel molecular dynamics simulator with enhanced sampling algorithms on multiple computational platforms , 2017, J. Comput. Chem..

[244]  C. Heisenberg,et al.  Overcoming the Limitations of the MARTINI Force Field in Simulations of Polysaccharides. , 2017, Journal of chemical theory and computation.

[245]  D. Tieleman,et al.  Structural basis for antibacterial peptide self‐immunity by the bacterial ABC transporter McjD , 2017, The EMBO journal.

[246]  P. Hammond,et al.  In vitro blood cell viability profiling of polymers used in molecular assembly , 2017, Scientific Reports.

[247]  L Monticelli,et al.  Interaction of hydrophobic polymers with model lipid bilayers , 2017, Scientific Reports.

[248]  S. Mayor,et al.  The mystery of membrane organization: composition, regulation and roles of lipid rafts , 2017, Nature Reviews Molecular Cell Biology.

[249]  Pim W. J. M. Frederix,et al.  Exchange pathways of plastoquinone and plastoquinol in the photosystem II complex , 2017, Nature Communications.

[250]  A. Boersma,et al.  Design and Properties of Genetically Encoded Probes for Sensing Macromolecular Crowding. , 2017, Biophysical journal.

[251]  Siewert J Marrink,et al.  Molecular Dynamics of Photosystem II Embedded in the Thylakoid Membrane. , 2017, The journal of physical chemistry. B.

[252]  Peter V Coveney,et al.  An Ensemble-Based Protocol for the Computational Prediction of Helix–Helix Interactions in G Protein-Coupled Receptors using Coarse-Grained Molecular Dynamics , 2017, Journal of chemical theory and computation.

[253]  Jonathan W. Essex,et al.  PyCGTOOL: Automated Generation of Coarse-Grained Molecular Dynamics Models from Atomistic Trajectories , 2017, J. Chem. Inf. Model..

[254]  Stefan Howorka,et al.  Stability and dynamics of membrane-spanning DNA nanopores , 2017, Nature Communications.

[255]  Adolfo B Poma,et al.  Combining the MARTINI and Structure-Based Coarse-Grained Approaches for the Molecular Dynamics Studies of Conformational Transitions in Proteins. , 2017, Journal of chemical theory and computation.

[256]  S. Marrink,et al.  Bulk Heterojunction Morphologies with Atomistic Resolution from Coarse-Grain Solvent Evaporation Simulations , 2017, Journal of the American Chemical Society.

[257]  A. Vijayaraghavan,et al.  Biomimetic Phospholipid Membrane Organization on Graphene and Graphene Oxide Surfaces: A Molecular Dynamics Simulation Study. , 2017, ACS nano.

[258]  J. Heyda,et al.  Beyond the Hofmeister Series: Ion-Specific Effects on Proteins and Their Biological Functions. , 2017, The journal of physical chemistry. B.

[259]  Lars V. Schäfer,et al.  A refined polarizable water model for the coarse-grained MARTINI force field with long-range electrostatic interactions. , 2017, The Journal of chemical physics.

[260]  J. Essex,et al.  G protein coupled receptor interactions with cholesterol deep in the membrane. , 2017, Biochimica et biophysica acta. Biomembranes.

[261]  Huilin Ma,et al.  Modeling Diversity in Structures of Bacterial Outer Membrane Lipids. , 2017, Journal of chemical theory and computation.

[262]  Helgi I. Ingólfsson,et al.  High-Throughput Simulations Reveal Membrane-Mediated Effects of Alcohols on MscL Gating , 2017, Journal of the American Chemical Society.

[263]  Stephanie M. Linker,et al.  Carbon Nanotubes Mediate Fusion of Lipid Vesicles. , 2017, ACS nano.

[264]  Z. Cournia,et al.  Self-assembly of anionic, ligand-coated nanoparticles in lipid membranes. , 2017, Nanoscale.

[265]  Weston B. Struwe,et al.  The role of interfacial lipids in stabilizing membrane protein oligomers , 2017, Nature.

[266]  G. Pavan,et al.  From Cooperative Self-Assembly to Water-Soluble Supramolecular Polymers Using Coarse-Grained Simulations. , 2017, ACS nano.

[267]  Ioannis G Kevrekidis,et al.  Intrinsic map dynamics exploration for uncharted effective free-energy landscapes , 2016, Proceedings of the National Academy of Sciences.

[268]  Vijay S. Pande,et al.  OpenMM 7: Rapid development of high performance algorithms for molecular dynamics , 2016, bioRxiv.

[269]  R. Best,et al.  Convergence and Sampling in Determining Free Energy Landscapes for Membrane Protein Association , 2016, The journal of physical chemistry. B.

[270]  Helgi I. Ingólfsson,et al.  Ganglioside-Lipid and Ganglioside-Protein Interactions Revealed by Coarse-Grained and Atomistic Molecular Dynamics Simulations , 2016, The journal of physical chemistry. B.

[271]  Helgi I. Ingólfsson,et al.  Martini Coarse-Grained Force Field: Extension to RNA. , 2015, Biophysical journal.

[272]  B. L. de Groot,et al.  CHARMM36m: an improved force field for folded and intrinsically disordered proteins , 2016, Nature Methods.

[273]  Andrew Zgorski,et al.  Toward Hydrodynamics with Solvent Free Lipid Models: STRD Martini. , 2016, Biophysical journal.

[274]  Zoe Cournia,et al.  DPPC-cholesterol phase diagram using coarse-grained Molecular Dynamics simulations. , 2016, Biochimica et biophysica acta.

[275]  S. Khalid,et al.  Molecular Dynamics Simulations Predict the Pathways via Which Pristine Fullerenes Penetrate Bacterial Membranes. , 2016, The journal of physical chemistry. B.

[276]  T. Rocha-Santos,et al.  (Nano)plastics in the environment - Sources, fates and effects. , 2016, The Science of the total environment.

[277]  L. Monticelli,et al.  Gold nanoparticles in model biological membranes: A computational perspective. , 2016, Biochimica et Biophysica Acta.

[278]  K. Schulten,et al.  Dynamic Behavior of Trigger Factor on the Ribosome. , 2016, Journal of Molecular Biology.

[279]  A. Chattopadhyay,et al.  Cholesterol-dependent Conformational Plasticity in GPCR Dimers , 2016, Scientific Reports.

[280]  Chandra Verma,et al.  Pushing the Envelope: Dengue Viral Membrane Coaxed into Shape by Molecular Simulations. , 2016, Structure.

[281]  Mark S. P. Sansom,et al.  Conformational Changes in the Epidermal Growth Factor Receptor: Role of the Transmembrane Domain Investigated by Coarse-Grained MetaDynamics Free Energy Calculations , 2016, Journal of the American Chemical Society.

[282]  Aleksander E. P. Durumeric,et al.  On the representability problem and the physical meaning of coarse-grained models. , 2016, The Journal of chemical physics.

[283]  A. Kolinski,et al.  Coarse-Grained Protein Models and Their Applications. , 2016, Chemical reviews.

[284]  Ingmar Schoen,et al.  Improved Side Chain Dynamics in MARTINI Simulations of Protein-Lipid Interfaces. , 2016, Journal of chemical theory and computation.

[285]  S. Marrink,et al.  Molecular mechanism of cardiolipin-mediated assembly of respiratory chain supercomplexes† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5sc04664e , 2016, Chemical science.

[286]  L. Monticelli,et al.  Simulating the interaction of lipid membranes with polymer and ligand-coated nanoparticles , 2016 .

[287]  W. L. Jorgensen,et al.  Hydration Properties and Solvent Effects for All-Atom Solutes in Polarizable Coarse-Grained Water. , 2016, The journal of physical chemistry. B.

[288]  Mark S.P. Sansom,et al.  The Role of the Membrane in the Structure and Biophysical Robustness of the Dengue Virion Envelope , 2016, Structure.

[289]  Helgi I. Ingólfsson,et al.  Martini straight: Boosting performance using a shorter cutoff and GPUs , 2016, Comput. Phys. Commun..

[290]  M. Berkowitz,et al.  Properties of Poloxamer Molecules and Poloxamer Micelles Dissolved in Water and Next to Lipid Bilayers: Results from Computer Simulations. , 2016, Journal of Physical Chemistry B.

[291]  T. Harroun,et al.  A MARTINI extension for Pseudomonas aeruginosa PAO1 lipopolysaccharide. , 2016, Journal of molecular graphics & modelling.

[292]  Helgi I. Ingólfsson,et al.  Parameters for Martini sterols and hopanoids based on a virtual-site description. , 2015, The Journal of chemical physics.

[293]  J. Smiatek,et al.  Coarse-grained simulations of polyelectrolyte complexes: MARTINI models for poly(styrene sulfonate) and poly(diallyldimethylammonium). , 2015, The Journal of chemical physics.

[294]  Dongsheng Liu,et al.  Preparation and Self-Assembly of Supramolecular Coil–Rod–Coil Triblock Copolymer PPO–dsDNA–PPO , 2015 .

[295]  Wenjuan Jiang,et al.  Simulating Gram-Negative Bacterial Outer Membrane: A Coarse Grain Model. , 2015, The journal of physical chemistry. B.

[296]  Berk Hess,et al.  GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers , 2015 .

[297]  Helgi I Ingólfsson,et al.  CHARMM-GUI Martini Maker for Coarse-Grained Simulations with the Martini Force Field. , 2015, Journal of chemical theory and computation.

[298]  G. Rossi,et al.  Monolayer-Protected Anionic Au Nanoparticles Walk into Lipid Membranes Step by Step , 2015 .

[299]  Joseph E. Goose,et al.  MemProtMD: Automated Insertion of Membrane Protein Structures into Explicit Lipid Membranes , 2015, Structure.

[300]  S. Marrink,et al.  Atomistic and Coarse Grain Topologies for the Cofactors Associated with the Photosystem II Core Complex. , 2015, The journal of physical chemistry. B.

[301]  K. Binnemans,et al.  Overview of the effect of salts on biphasic ionic liquid/water solvent extraction systems: anion exchange, mutual solubility, and thermomorphic properties. , 2015, The journal of physical chemistry. B.

[302]  Kurt Kremer,et al.  Automated parametrization of the coarse-grained Martini force field for small organic molecules. , 2015, Journal of chemical theory and computation.

[303]  Helgi I. Ingólfsson,et al.  Computational Lipidomics with insane: A Versatile Tool for Generating Custom Membranes for Molecular Simulations. , 2015, Journal of chemical theory and computation.

[304]  D. Tieleman,et al.  High-Throughput Simulations of Dimer and Trimer Assembly of Membrane Proteins. The DAFT Approach. , 2015, Journal of chemical theory and computation.

[305]  Walter Thiel,et al.  Hybrid Quantum Mechanics/Molecular Mechanics/Coarse Grained Modeling: A Triple-Resolution Approach for Biomolecular Systems. , 2015, Journal of chemical theory and computation.

[306]  L. Monticelli,et al.  C60 fullerene promotes lung monolayer collapse , 2015, Journal of The Royal Society Interface.

[307]  Daniel L. Parton,et al.  Nothing to Sneeze At: A Dynamic and Integrative Computational Model of an Influenza A Virion , 2015, Structure.

[308]  M. Karttunen,et al.  Lipid monolayer disruption caused by aggregated carbon nanoparticles , 2015 .

[309]  C. Athale,et al.  Thermodynamic and kinetic characterization of transmembrane helix association. , 2015, Physical chemistry chemical physics : PCCP.

[310]  Helgi I Ingólfsson,et al.  Dry Martini, a coarse-grained force field for lipid membrane simulations with implicit solvent. , 2015, Journal of chemical theory and computation.

[311]  S Gnanakaran,et al.  MARTINI coarse-grained model for crystalline cellulose microfibers. , 2015, The journal of physical chemistry. B.

[312]  L. Dijkhuizen,et al.  Martini Coarse-Grained Force Field: Extension to DNA. , 2015, Journal of chemical theory and computation.

[313]  Daniela Kalafatovic,et al.  Exploring the sequence space for (tri-)peptide self-assembly to design and discover new hydrogels. , 2015, Nature chemistry.

[314]  Panagiotis Angelikopoulos,et al.  Membrane Partitioning of Anionic, Ligand-Coated Nanoparticles Is Accompanied by Ligand Snorkeling, Local Disordering, and Cholesterol Depletion , 2014, PLoS Comput. Biol..

[315]  L. Monticelli,et al.  Modeling the effect of nano-sized polymer particles on the properties of lipid membranes , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[316]  B. Poolman,et al.  Disaccharides impact the lateral organization of lipid membranes. , 2014, Journal of the American Chemical Society.

[317]  Helgi I Ingólfsson,et al.  Lipid organization of the plasma membrane. , 2014, Journal of the American Chemical Society.

[318]  Mark S. P. Sansom,et al.  Lipid Clustering Correlates with Membrane Curvature as Revealed by Molecular Simulations of Complex Lipid Bilayers , 2014, PLoS Comput. Biol..

[319]  M. Lürling,et al.  Nanoplastic Affects Growth of S. obliquus and Reproduction of D. magna , 2014, Environmental science & technology.

[320]  H. Grubmüller,et al.  Expansion of the fusion stalk and its implication for biological membrane fusion , 2014, Proceedings of the National Academy of Sciences.

[321]  G. Jackson,et al.  Force-field parameters from the SAFT-γ equation of state for use in coarse-grained molecular simulations. , 2014, Annual review of chemical and biomolecular engineering.

[322]  S. Marrink,et al.  Simulation of polyethylene glycol and calcium-mediated membrane fusion. , 2014, The Journal of chemical physics.

[323]  Klaus Schulten,et al.  CHARMM-GUI PACE CG Builder for Solution, Micelle, and Bilayer Coarse-Grained Simulations , 2014, J. Chem. Inf. Model..

[324]  Luca Monticelli,et al.  Lipid membranes as solvents for carbon nanoparticles. , 2014, Physical review letters.

[325]  Matej Praprotnik,et al.  Adaptive resolution simulation of an atomistic protein in MARTINI water. , 2014, The Journal of chemical physics.

[326]  Paola Carbone,et al.  Coarse-graining poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) block copolymers using the MARTINI force field. , 2014, The journal of physical chemistry. B.

[327]  Siewert J Marrink,et al.  Going Backward: A Flexible Geometric Approach to Reverse Transformation from Coarse Grained to Atomistic Models. , 2014, Journal of chemical theory and computation.

[328]  Luca Monticelli,et al.  Polystyrene Nanoparticles Perturb Lipid Membranes. , 2014, The journal of physical chemistry letters.

[329]  Helgi I Ingólfsson,et al.  The power of coarse graining in biomolecular simulations , 2013, Wiley interdisciplinary reviews. Computational molecular science.

[330]  A. Alexander-Katz,et al.  Cell membranes open "doors" for cationic nanoparticles/biomolecules: insights into uptake kinetics. , 2013, ACS nano.

[331]  D. Tieleman,et al.  Interaction of pristine and functionalized carbon nanotubes with lipid membranes. , 2013, The journal of physical chemistry. B.

[332]  A. Elcock,et al.  Toward optimized potential functions for protein-protein interactions in aqueous solutions: osmotic second virial coefficient calculations using the MARTINI coarse-grained force field. , 2013, Journal of chemical theory and computation.

[333]  S. Marrink,et al.  MARTINI Model for Physisorption of Organic Molecules on Graphite , 2013 .

[334]  D. Tieleman,et al.  Perspective on the Martini model. , 2013, Chemical Society reviews.

[335]  D. Tieleman,et al.  Improved Angle Potentials for Coarse-Grained Molecular Dynamics Simulations. , 2013, Journal of chemical theory and computation.

[336]  Lanyuan Lu,et al.  Fitting coarse-grained distribution functions through an iterative force-matching method. , 2013, The Journal of chemical physics.

[337]  P. Angelikopoulos,et al.  Homogeneous Hydrophobic-Hydrophilic Surface Patterns Enhance Permeation of Nanoparticles through Lipid Membranes. , 2013, The journal of physical chemistry letters.

[338]  Marissa G. Saunders,et al.  Coarse-graining methods for computational biology. , 2013, Annual review of biophysics.

[339]  Tsjerk A. Wassenaar,et al.  Mixing MARTINI: electrostatic coupling in hybrid atomistic-coarse-grained biomolecular simulations. , 2013, The journal of physical chemistry. B.

[340]  Jean-Pierre Mazat,et al.  Evidence for cardiolipin binding sites on the membrane-exposed surface of the cytochrome bc1. , 2013, Journal of the American Chemical Society.

[341]  S. Marrink,et al.  Identification of cardiolipin binding sites on cytochrome c oxidase at the entrance of proton channels , 2013, Scientific Reports.

[342]  Siewert J Marrink,et al.  Martini Force Field Parameters for Glycolipids. , 2013, Journal of chemical theory and computation.

[343]  W F Drew Bennett,et al.  Improved Parameters for the Martini Coarse-Grained Protein Force Field. , 2013, Journal of chemical theory and computation.

[344]  D. Roccatano,et al.  Understanding the interaction of block copolymers with DMPC lipid bilayer using coarse-grained molecular dynamics simulations. , 2012, The journal of physical chemistry. B.

[345]  Klaus Schulten,et al.  Further optimization of a hybrid united-atom and coarse-grained force field for folding simulations: Improved backbone hydration and interactions between charged side chains. , 2012, Journal of chemical theory and computation.

[346]  George C Schatz,et al.  Modeling the self-assembly of peptide amphiphiles into fibers using coarse-grained molecular dynamics. , 2012, Nano letters.

[347]  Xiaoning Yang,et al.  Coarse-grained molecular simulation of self-assembly for nonionic surfactants on graphene nanostructures. , 2012, The journal of physical chemistry. B.

[348]  W. Kühlbrandt,et al.  Structure of the yeast F1Fo-ATP synthase dimer and its role in shaping the mitochondrial cristae , 2012, Proceedings of the National Academy of Sciences.

[349]  H. Grubmüller,et al.  Line-Tension Controlled Mechanism for Influenza Fusion , 2012, PloS one.

[350]  R. Zhou,et al.  Probing the self-assembly mechanism of diphenylalanine-based peptide nanovesicles and nanotubes. , 2012, ACS nano.

[351]  Replica-exchange molecular dynamics simulation of a lipid bilayer system with a coarse-grained model , 2012 .

[352]  Luca Monticelli,et al.  On Atomistic and Coarse-Grained Models for C60 Fullerene. , 2012, Journal of chemical theory and computation.

[353]  E. W. Meijer,et al.  Functional Supramolecular Polymers , 2012, Science.

[354]  Yun-Dong Wu,et al.  Parameterization of PACE Force Field for Membrane Environment and Simulation of Helical Peptides and Helix-Helix Association. , 2012, Journal of chemical theory and computation.

[355]  Rein V. Ulijn,et al.  Virtual Screening for Dipeptide Aggregation: Toward Predictive Tools for Peptide Self-Assembly , 2011, The journal of physical chemistry letters.

[356]  Samuel Kaski,et al.  High Density Lipoprotein Structural Changes and Drug Response in Lipidomic Profiles following the Long-Term Fenofibrate Therapy in the FIELD Substudy , 2011, PloS one.

[357]  W F Drew Bennett,et al.  Water Defect and Pore Formation in Atomistic and Coarse-Grained Lipid Membranes: Pushing the Limits of Coarse Graining. , 2011, Journal of chemical theory and computation.

[358]  R. Pastor,et al.  Coarse-grained model for PEGylated lipids: effect of PEGylation on the size and shape of self-assembled structures. , 2011, The journal of physical chemistry. B.

[359]  Siewert J Marrink,et al.  Hybrid simulations: combining atomistic and coarse-grained force fields using virtual sites. , 2011, Physical chemistry chemical physics : PCCP.

[360]  Daniel M Zuckerman,et al.  Equilibrium sampling in biomolecular simulations. , 2011, Annual review of biophysics.

[361]  Phillip J Stansfeld,et al.  From Coarse Grained to Atomistic: A Serial Multiscale Approach to Membrane Protein Simulations. , 2011, Journal of chemical theory and computation.

[362]  R. Larson,et al.  Effects of PEGylation on the Size and Internal Structure of Dendrimers: Self-Penetration of Long PEG Chains into the Dendrimer Core , 2011 .

[363]  Ilpo Vattulainen,et al.  Coarse-graining polymers with the MARTINI force-field: polystyrene as a benchmark case , 2011 .

[364]  Yun-Dong Wu,et al.  PACE Force Field for Protein Simulations. 1. Full Parameterization of Version 1 and Verification. , 2010, Journal of chemical theory and computation.

[365]  Jelena Telenius,et al.  Molecular organization of the tear fluid lipid layer. , 2010, Biophysical journal.

[366]  D Peter Tieleman,et al.  Direct simulation of protein-mediated vesicle fusion: lung surfactant protein B. , 2010, Biophysical journal.

[367]  Kirsi I. Pakkanen,et al.  Triglyceride Blisters in Lipid Bilayers: Implications for Lipid Droplet Biogenesis and the Mobile Lipid Signal in Cancer Cell Membranes , 2010, PloS one.

[368]  Jiaqi Lin,et al.  Penetration of lipid membranes by gold nanoparticles: insights into cellular uptake, cytotoxicity, and their relationship. , 2010, ACS nano.

[369]  Perttu S. Niemelä,et al.  Composition and lipid spatial distribution of HDL particles in subjects with low and high HDL-cholesterol[S] , 2010, Journal of Lipid Research.

[370]  M. Sansom,et al.  A multiscale simulation study of carbon nanotube interactions with designed amphiphilic peptide helices. , 2010, Nanoscale.

[371]  Durba Sengupta,et al.  Polarizable Water Model for the Coarse-Grained MARTINI Force Field , 2010, PLoS Comput. Biol..

[372]  Nikolaos Bentenitis,et al.  Kirkwood-Buff integrals for ideal solutions. , 2010, The Journal of chemical physics.

[373]  Petr Král,et al.  Sandwiched graphene--membrane superstructures. , 2010, ACS nano.

[374]  Alexander D. MacKerell,et al.  CHARMM general force field: A force field for drug‐like molecules compatible with the CHARMM all‐atom additive biological force fields , 2009, J. Comput. Chem..

[375]  Renxiao Wang,et al.  Hemolytic mechanism of dioscin proposed by molecular dynamics simulations , 2010, Journal of molecular modeling.

[376]  Siewert J Marrink,et al.  Martini Coarse-Grained Force Field: Extension to Carbohydrates. , 2009, Journal of chemical theory and computation.

[377]  Mark S. P. Sansom,et al.  PIP2-Binding Site in Kir Channels: Definition by Multiscale Biomolecular Simulations , 2009, Biochemistry.

[378]  Alex H de Vries,et al.  A coarse-grained model for polyethylene oxide and polyethylene glycol: conformation and hydrodynamics. , 2009, The journal of physical chemistry. B.

[379]  Xavier Periole,et al.  Combining an Elastic Network With a Coarse-Grained Molecular Force Field: Structure, Dynamics, and Intermolecular Recognition. , 2009, Journal of chemical theory and computation.

[380]  M J Harvey,et al.  ACEMD: Accelerating Biomolecular Dynamics in the Microsecond Time Scale. , 2009, Journal of chemical theory and computation.

[381]  Siewert J. Marrink,et al.  The molecular face of lipid rafts in model membranes , 2008, Proceedings of the National Academy of Sciences.

[382]  Mark S P Sansom,et al.  Blocking of carbon nanotube based nanoinjectors by lipids: a simulation study. , 2008, Nano letters.

[383]  Francesco Stellacci,et al.  Surface-structure-regulated cell-membrane penetration by monolayer-protected nanoparticles. , 2008, Nature materials.

[384]  A. Mark,et al.  Application of mean field boundary potentials in simulations of lipid vesicles. , 2008, The journal of physical chemistry. B.

[385]  R. Larson,et al.  Coarse-grained molecular dynamics studies of the concentration and size dependence of fifth- and seventh-generation PAMAM dendrimers on pore formation in DMPC bilayer. , 2008, The journal of physical chemistry. B.

[386]  D. Tieleman,et al.  Computer simulation study of fullerene translocation through lipid membranes. , 2008, Nature nanotechnology.

[387]  R. Larson,et al.  The MARTINI Coarse-Grained Force Field: Extension to Proteins. , 2008, Journal of chemical theory and computation.

[388]  Siewert J Marrink,et al.  Mechanosensitive membrane channels in action. , 2008, Biophysical journal.

[389]  Luca Monticelli,et al.  The molecular mechanism of monolayer-bilayer transformations of lung surfactant from molecular dynamics simulations. , 2007, Biophysical journal.

[390]  Thomas Huber,et al.  G protein-coupled receptors self-assemble in dynamics simulations of model bilayers. , 2007, Journal of the American Chemical Society.

[391]  D. Tieleman,et al.  The MARTINI force field: coarse grained model for biomolecular simulations. , 2007, The journal of physical chemistry. B.

[392]  Martin Dahlberg,et al.  Polymorphic phase behavior of cardiolipin derivatives studied by coarse-grained molecular dynamics. , 2007, The journal of physical chemistry. B.

[393]  R. Larson,et al.  Molecular dynamics simulations of PAMAM dendrimer-induced pore formation in DPPC bilayers with a coarse-grained model. , 2006, The journal of physical chemistry. B.

[394]  Peter M. Kasson,et al.  Ensemble molecular dynamics yields submillisecond kinetics and intermediates of membrane fusion , 2006, Proceedings of the National Academy of Sciences.

[395]  Wilfred F van Gunsteren,et al.  Multigraining: an algorithm for simultaneous fine-grained and coarse-grained simulation of molecular systems. , 2006, The Journal of chemical physics.

[396]  Klaus Schulten,et al.  Coarse grained protein-lipid model with application to lipoprotein particles. , 2006, The journal of physical chemistry. B.

[397]  Peter J Bond,et al.  Insertion and assembly of membrane proteins via simulation. , 2006, Journal of the American Chemical Society.

[398]  Junmei Wang,et al.  Development and testing of a general amber force field , 2004, J. Comput. Chem..

[399]  Francesco Stellacci,et al.  Spontaneous assembly of subnanometre-ordered domains in the ligand shell of monolayer-protected nanoparticles , 2004, Nature materials.

[400]  A. Mark,et al.  Coarse grained model for semiquantitative lipid simulations , 2004 .

[401]  A. Mark,et al.  Molecular dynamics simulation of the formation, structure, and dynamics of small phospholipid vesicles. , 2003, Journal of the American Chemical Society.

[402]  Siewert J Marrink,et al.  The mechanism of vesicle fusion as revealed by molecular dynamics simulations. , 2003, Journal of the American Chemical Society.

[403]  Reinhard Lipowsky,et al.  Equilibrium structure and lateral stress distribution of amphiphilic bilayers from dissipative particle dynamics simulations , 2002 .

[404]  R. C. Reeder,et al.  A Coarse Grain Model for Phospholipid Simulations , 2001 .

[405]  M S Sansom,et al.  Lipid properties and the orientation of aromatic residues in OmpF, influenza M2, and alamethicin systems: molecular dynamics simulations. , 1998, Biochemistry.

[406]  Reinhard Lipowsky,et al.  Computer simulations of bilayer membranes - self-assembly and interfacial tension. , 1998 .

[407]  Robin Taylor,et al.  Intermolecular Nonbonded Contact Distances in Organic Crystal Structures: Comparison with Distances Expected from van der Waals Radii , 1996 .

[408]  Peter A. J. Hilbers,et al.  Computer simulations of surfactant self-assembly. , 1993 .

[409]  K. Esselink,et al.  Computer simulations of a water/oil interface in the presence of micelles , 1990, Nature.

[410]  G. Grest,et al.  Dynamics of entangled linear polymer melts: A molecular‐dynamics simulation , 1990 .

[411]  M. Bloom,et al.  Mattress model of lipid-protein interactions in membranes. , 1984, Biophysical journal.

[412]  K. Binder,et al.  Dynamics of entangled polymer melts: A computer simulation , 1981 .

[413]  M. Levitt,et al.  Computer simulation of protein folding , 1975, Nature.