How do galaxies populate dark matter haloes

For any assumed standard stellar initial mass function, the Sloan Digital Sky Survey (SDSS) gives a precise determination of the abundance of galaxies as a function of their stellar mass over the full stellar mass range 108 M(circle dot) < M(*) < 1012 M(circle dot). Within the concordance Lambda cold dark matter (Lambda CDM) cosmology, the Millennium Simulations give precise halo abundances as a function of mass and redshift for all haloes within which galaxies can form. Under the plausible hypothesis that the stellar mass of a galaxy is an increasing function of the maximum mass ever attained by its halo, these results combine to give halo mass as a function of stellar mass. The result agrees quite well with observational estimates of mean halo mass as a function of stellar mass from stacking analyses of the gravitational lensing signal and the satellite dynamics of SDSS galaxies. For M(*) similar to 5.5 x 1010 M(circle dot), the stellar mass usually assumed for the Milky Way (MW), the implied halo mass is similar to 2 x 1012 M(circle dot), consistent with most recent direct estimates and inferences from the MW/M31 timing argument. The fraction of the baryons associated with each halo which are present as stars in its central galaxy reaches a maximum of 20 per cent at masses somewhat below that of the MW and falls rapidly at both higher and lower masses. These conversion efficiencies are lower than in almost all recent high-resolution simulations of galaxy formation, showing that these are not yet viable models for the formation of typical members of the galaxy population. When inserted in the Millennium-II Simulation, our derived relation between stellar mass and halo mass predicts a stellar mass autocorrelation function in excellent agreement with that measured directly in the SDSS. The implied Tully-Fisher relation also appears consistent with observation, suggesting that galaxy luminosity functions and Tully-Fisher relations can be reproduced simultaneously in a Lambda CDM cosmology.

[1]  G. Vaucouleurs,et al.  Third Reference Catalogue of Bright Galaxies , 2012 .

[2]  S. White,et al.  Formation of isolated dwarf galaxies with feedback , 2009, 0902.1754.

[3]  S. White,et al.  The birth and growth of neutralino haloes , 2009, 0906.1730.

[4]  R. Somerville,et al.  CONSTRAINTS ON THE RELATIONSHIP BETWEEN STELLAR MASS AND HALO MASS AT LOW AND HIGH REDSHIFT , 2009, 0903.4682.

[5]  Volker Springel,et al.  Resolving cosmic structure formation with the Millennium-II simulation , 2009, 0903.3041.

[6]  S. White,et al.  The distribution of stellar mass in the low‐redshift Universe , 2009, 0901.0706.

[7]  S. White,et al.  The formation and survival of discs in a ΛcDM universe , 2008, 0812.0976.

[8]  K. Abazajian,et al.  THE SEVENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY , 2008, 0812.0649.

[9]  S. More,et al.  Satellite kinematics – II. The halo mass–luminosity relation of central galaxies in SDSS , 2008, 0807.4532.

[10]  R. Wechsler,et al.  SUBMITTED TO THE ASTROPHYSICAL JOURNAL Preprint typeset using LATEX style emulateapj v. 10/09/06 CONNECTING GALAXIES, HALOS, AND STAR FORMATION RATES ACROSS COSMIC TIME , 2008 .

[11]  S. Driver,et al.  On the galaxy stellar mass function, the mass-metallicity relation, and the implied baryonic mass function , 2008, 0804.2892.

[12]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[13]  H. Rix,et al.  The Milky Way’s Circular Velocity Curve to 60 kpc and an Estimate of the Dark Matter Halo Mass from the Kinematics of ~2400 SDSS Blue Horizontal-Branch Stars , 2008, 0801.1232.

[14]  Puragra Guhathakurta,et al.  The Stellar Content of Galaxy Halos: A Comparison between ΛCDM Models and Observations of M31 , 2007, 0709.2076.

[15]  M. J. Astrophysik,et al.  Masses for the Local Group and the Milky Way , 2007, 0710.3740.

[16]  V. Springel,et al.  A unified model for AGN feedback in cosmological simulations of structure formation , 2007, 0705.2238.

[17]  R. Wechsler,et al.  The Hierarchical Build-Up of Massive Galaxies and the Intracluster Light since z = 1 , 2007, astro-ph/0703374.

[18]  G. Kauffmann,et al.  Modelling and interpreting the dependence of clustering on the spectral energy distributions of galaxies , 2007, astro-ph/0701682.

[19]  J. Rhodes,et al.  The Sloan Lens ACS Survey. IV. The Mass Density Profile of Early-Type Galaxies out to 100 Effective Radii , 2007, astro-ph/0701589.

[20]  G. Lucia,et al.  The hierarchical formation of the brightest cluster galaxies , 2006, astro-ph/0606519.

[21]  S. Roweis,et al.  K-Corrections and Filter Transformations in the Ultraviolet, Optical, and Near-Infrared , 2006, astro-ph/0606170.

[22]  S. White,et al.  Halo assembly bias and its effects on galaxy clustering , 2006, astro-ph/0605636.

[23]  S. White,et al.  Assembly bias in the clustering of dark matter haloes , 2006, astro-ph/0611921.

[24]  M. Fairbairn,et al.  Baryonic pinching of galactic dark matter halos , 2006, astro-ph/0608634.

[25]  C. Flynn,et al.  On the mass-to-light ratio of the local Galactic disc and the optical luminosity of the Galaxy , 2006, astro-ph/0608193.

[26]  B. Gibson,et al.  The RAVE Survey: Constraining the Local Galactic Escape Speed , 2006, Proceedings of the International Astronomical Union.

[27]  H. Rix,et al.  Dark Matter Halos of Disk Galaxies: Constraints from the Tully-Fisher Relation , 2006, astro-ph/0607394.

[28]  S. Courteau,et al.  A Revised Model for the Formation of Disk Galaxies: Low Spin and Dark Halo Expansion , 2006, astro-ph/0604553.

[29]  R. Wechsler,et al.  Close Galaxy Counts as a Probe of Hierarchical Structure Formation , 2006, astro-ph/0604506.

[30]  W. Dehnen,et al.  The velocity dispersion and mass profile of the Milky Way , 2006, astro-ph/0603825.

[31]  G. Kauffmann,et al.  Modelling galaxy clustering in a high-resolution simulation of structure formation , 2006, astro-ph/0603546.

[32]  T. Ensslin,et al.  Detecting shock waves in cosmological smoothed particle hydrodynamics simulations , 2006, astro-ph/0603483.

[33]  Fabio Governato,et al.  Forming disc galaxies in ΛCDM simulations , 2006 .

[34]  P. Salucci,et al.  New Relationships between Galaxy Properties and Host Halo Mass, and the Role of Feedbacks in Galaxy Formation , 2006, astro-ph/0601577.

[35]  R. Wechsler,et al.  Modeling Luminosity-dependent Galaxy Clustering through Cosmic Time , 2005, astro-ph/0512234.

[36]  G. Kauffmann,et al.  The many lives of active galactic nuclei: cooling flows, black holes and the luminosities and colour , 2005, astro-ph/0508046.

[37]  Volker Springel,et al.  The Many lives of AGN: Cooling flows, black holes and the luminosities and colours of galaxies , 2006, astro-ph/0602065.

[38]  Oxford,et al.  Breaking the hierarchy of galaxy formation , 2005, astro-ph/0511338.

[39]  J. Brinkmann,et al.  Galaxy halo masses and satellite fractions from galaxy–galaxy lensing in the Sloan Digital Sky Survey: stellar mass, luminosity, morphology and environment dependencies , 2005, astro-ph/0511164.

[40]  S. White,et al.  The age dependence of halo clustering , 2005, astro-ph/0506510.

[41]  A. Helmi,et al.  The radial velocity dispersion profile of the Galactic halo : constraining the density profile of the dark halo of the Milky Way , 2005, astro-ph/0506102.

[42]  J. Peacock,et al.  Simulations of the formation, evolution and clustering of galaxies and quasars , 2005, Nature.

[43]  C. Frenk,et al.  Effects of feedback on the morphology of galaxy discs , 2005, astro-ph/0503676.

[44]  Y. Jing,et al.  Semianalytical Model of Galaxy Formation with High-Resolution N-Body Simulations , 2004, astro-ph/0408475.

[45]  D. Nagai,et al.  Response of Dark Matter Halos to Condensation of Baryons: Cosmological Simulations and Improved Adiabatic Contraction Model , 2004, astro-ph/0406247.

[46]  S. White,et al.  The subhalo populations of ΛCDM dark haloes , 2004, astro-ph/0404589.

[47]  J. Ostriker,et al.  Linking halo mass to galaxy luminosity , 2004, astro-ph/0402500.

[48]  P. Nulsen,et al.  ACCEPTED FOR PUBLICATION IN THE ASTROPHYSICAL JOURNAL Preprint typeset using LATEX style emulateapj v. 4/12/04 A SYSTEMATIC STUDY OF RADIO-INDUCED X-RAY CAVITIES IN CLUSTERS, GROUPS, AND GALAXIES , 2004 .

[49]  F. Bouchet,et al.  GALICS I: A hybrid N-body semi-analytic model of hierarchical galaxy formation , 2003, astro-ph/0309186.

[50]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[51]  Edward J. Wollack,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters , 2003, astro-ph/0302209.

[52]  R. Davé,et al.  How do galaxies get their gas , 2002, astro-ph/0407095.

[53]  R. Nichol,et al.  Stellar masses and star formation histories for 105 galaxies from the Sloan Digital Sky Survey , 2002, astro-ph/0204055.

[54]  M. Steinmetz,et al.  Simulations of Galaxy Formation in a Λ Cold Dark Matter Universe. I. Dynamical and Photometric Properties of a Simulated Disk Galaxy , 2002, astro-ph/0211331.

[55]  T. Beers,et al.  The Mass of the Milky Way: Limits from a newly assembled set of halo objects , 2002, astro-ph/0210508.

[56]  H. Mo,et al.  Constraining galaxy formation and cosmology with the conditional luminosity function of galaxies , 2002, astro-ph/0207019.

[57]  V. Springel,et al.  Cosmological smoothed particle hydrodynamics simulations: a hybrid multiphase model for star formation , 2002, astro-ph/0206393.

[58]  A. Cooray Second Moment of Halo Occupation Number , 2002, astro-ph/0206388.

[59]  S. White,et al.  The abundance and clustering of dark haloes in the standard ΛCDM cosmogony , 2002, astro-ph/0202393.

[60]  D. Weinberg,et al.  The Halo Occupation Distribution: Toward an Empirical Determination of the Relation between Galaxies and Mass , 2001, astro-ph/0109001.

[61]  C. Baugh,et al.  The effects of photoionization on galaxy formation – I. Model and results at z=0 , 2001, astro-ph/0108217.

[62]  S.Cole,et al.  The 2dF Galaxy Redshift Survey: spectra and redshifts , 2001, astro-ph/0106498.

[63]  A. Fabian,et al.  On the soft X-ray spectrum of cooling flows , 2000, astro-ph/0010509.

[64]  E. Bell,et al.  Stellar Mass-to-Light Ratios and the Tully-Fisher Relation , 2000, astro-ph/0008056.

[65]  L. Ciotti,et al.  Cooling Flows and Quasars. II. Detailed Models of Feedback-modulated Accretion Flows , 1999, astro-ph/9912064.

[66]  Padova,et al.  Populating a cluster of galaxies - I. Results at z=0 , 2000, astro-ph/0012055.

[67]  C. Baugh,et al.  Hierarchical galaxy formation , 2000, astro-ph/0007281.

[68]  Walter A. Siegmund,et al.  The Sloan Digital Sky Survey: Technical Summary , 2000, astro-ph/0006396.

[69]  M. Steinmetz,et al.  The Core Density of Dark Matter Halos: A Critical Challenge to the ΛCDM Paradigm? , 1999, astro-ph/9908114.

[70]  N. Evans,et al.  The present and future mass of the Milky Way halo , 1999, astro-ph/9906197.

[71]  G. Kauffmann,et al.  Clustering of galaxies in a hierarchical universe - I. Methods and results at z=0 , 1998, astro-ph/9805283.

[72]  R. Cen,et al.  Physical Bias of Galaxies from Large-Scale Hydrodynamic Simulations , 1998, astro-ph/9809370.

[73]  S. White,et al.  The formation of galactic discs , 1997, astro-ph/9707093.

[74]  C. Frenk,et al.  A recipe for galaxy formation , 1994, astro-ph/9402001.

[75]  G. Kauffmann,et al.  The formation and evolution of galaxies within merging dark matter haloes , 1993 .

[76]  J. Binney,et al.  Elliptical galaxy cooling flows without mass drop-out , 1993 .

[77]  G. Efstathiou Suppressing the formation of dwarf galaxies via photoionization , 1992 .

[78]  I. Thompson,et al.  Observations with the parking lot camera. I. Surface photometry and color distribution of the Magellanic Clouds , 1988 .

[79]  S. Faber,et al.  Contraction of Dark Matter Galactic Halos Due to Baryonic Infall , 1986 .

[80]  G. Efstathiou,et al.  The evolution of large-scale structure in a universe dominated by cold dark matter , 1985 .

[81]  S. White,et al.  The response of a spheroid to a disc field or were bulges ever ellipticals , 1984 .

[82]  M. Rees,et al.  Core condensation in heavy halos: a two-stage theory for galaxy formation and clustering , 1978 .

[83]  R. Larson Effects of Supernovae on the Early Evolution of Galaxies , 1974 .

[84]  William H. Press,et al.  Formation of Galaxies and Clusters of Galaxies by Self-Similar Gravitational Condensation , 1974 .