A Distributed Observer for a Time-Invariant Linear System

A time-invariant, linear, distributed observer is described for estimating the state of an <inline-formula> <tex-math notation="LaTeX">$m>0$</tex-math></inline-formula> channel, <inline-formula><tex-math notation="LaTeX">$n$ </tex-math></inline-formula>-dimensional continuous-time linear system of the form <inline-formula> <tex-math notation="LaTeX">$\dot{x} = Ax,\;y_i = C_ix,\;i\in \lbrace 1,2,\ldots, m\rbrace$</tex-math></inline-formula>. The state <inline-formula><tex-math notation="LaTeX">$x$</tex-math></inline-formula> is simultaneously estimated by <inline-formula><tex-math notation="LaTeX">$m$</tex-math></inline-formula> agents assuming each agent <inline-formula> <tex-math notation="LaTeX">$i$</tex-math></inline-formula> senses <inline-formula><tex-math notation="LaTeX">$y_i$ </tex-math></inline-formula> and receives the state <inline-formula><tex-math notation="LaTeX">$z_j$</tex-math> </inline-formula> of each of its neighbors’ estimators. Neighbor relations are characterized by a constant directed graph <inline-formula><tex-math notation="LaTeX">$\mathbb {N}$</tex-math></inline-formula> whose vertices correspond to agents and whose arcs depict neighbor relations. For the case when the neighbor graph is strongly connected, the overall distributed observer consists of <inline-formula><tex-math notation="LaTeX">$m$</tex-math> </inline-formula> linear estimators, one for each agent; <inline-formula><tex-math notation="LaTeX">$m-1$</tex-math> </inline-formula> of the estimators are of dimension <inline-formula><tex-math notation="LaTeX">$n$</tex-math> </inline-formula> and one estimator is of dimension <inline-formula><tex-math notation="LaTeX">$n+m-1$</tex-math> </inline-formula>. Using results from the classical decentralized control theory, it is shown that subject to the assumptions that none of the <inline-formula><tex-math notation="LaTeX">$C_i$</tex-math></inline-formula> are zero, the neighbor graph <inline-formula><tex-math notation="LaTeX">$\mathbb {N}$</tex-math></inline-formula> is strongly connected, the system whose state to be estimated is jointly observable, and nothing more, it is possible to freely assign the spectrum of the overall distributed observer. For the more general case, when <inline-formula> <tex-math notation="LaTeX">$\mathbb {N}$</tex-math></inline-formula> has <inline-formula><tex-math notation="LaTeX"> $q>1$</tex-math></inline-formula> strongly connected components, it is explained how to construct a family of <inline-formula><tex-math notation="LaTeX">$q$</tex-math></inline-formula> distributed observers, one for each component, which can estimate <inline-formula><tex-math notation="LaTeX">$x$</tex-math></inline-formula> at a preassigned convergence rate.

[1]  Usman A. Khan,et al.  On the stability and optimality of distributed Kalman filters with finite-time data fusion , 2011, Proceedings of the 2011 American Control Conference.

[2]  Hyungbo Shim,et al.  Distributed Luenberger observer design , 2016, 2016 IEEE 55th Conference on Decision and Control (CDC).

[3]  Reza Olfati-Saber,et al.  Kalman-Consensus Filter : Optimality, stability, and performance , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[4]  A. Stephen Morse,et al.  Decentralized control of linear multivariable systems , 1976, Autom..

[5]  Dong Ryeol Shin,et al.  Dynamic observers for linear time-invariant systems , 2002, Autom..

[6]  D. Luenberger Observing the State of a Linear System , 1964, IEEE Transactions on Military Electronics.

[7]  J. P. Corfmat,et al.  Control of Linear Systems through Specified Input Channels , 1976 .

[8]  Lili Wang,et al.  A hybrid observer for a distributed linear system with a changing neighbor graph , 2017, 2017 IEEE 56th Annual Conference on Decision and Control (CDC).

[9]  Shinkyu Park,et al.  Design of Distributed LTI Observers for State Omniscience , 2017, IEEE Transactions on Automatic Control.

[10]  Stephen P. Boyd,et al.  A scheme for robust distributed sensor fusion based on average consensus , 2005, IPSN 2005. Fourth International Symposium on Information Processing in Sensor Networks, 2005..

[11]  Shreyas Sundaram,et al.  Distributed Observers for LTI Systems , 2016, IEEE Transactions on Automatic Control.

[12]  Ruggero Carli,et al.  Communication constraints in the average consensus problem , 2008, Autom..

[13]  R. Olfati-Saber,et al.  Consensus Filters for Sensor Networks and Distributed Sensor Fusion , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[14]  Gordon F. Royle,et al.  Algebraic Graph Theory , 2001, Graduate texts in mathematics.

[15]  Brian D. O. Anderson,et al.  Single-channel control of a two-channel system , 1979 .

[16]  Florian Dörfler,et al.  Continuous-Time Distributed Observers With Discrete Communication , 2013, IEEE Journal of Selected Topics in Signal Processing.

[17]  W. Wonham Dynamic observers-geometric theory , 1970 .

[18]  Mohammad Aldeen,et al.  Stabilization of decentralized control systems , 1997 .

[19]  J. Pearson,et al.  Pole placement using dynamic compensators , 1970 .