Peptidylarginine deiminases in citrullination, gene regulation, health and pathogenesis.

Peptidylarginine deiminases are a family of enzymes that mediate post-translational modifications of protein arginine residues by deimination or demethylimination to produce citrulline. In vitro, the activity of PADs is dependent on calcium and reductive reagents carrying a free sulfhydryl group. The discovery that PAD4 can target both arginine and methyl-arginine for citrullination about 10years ago renewed our interest in studying this family of enzymes in gene regulation and their physiological functions. The deregulation of PADs is involved in the etiology of multiple human diseases, including cancers and autoimmune disorders. There is a growing effort to develop isoform specific PAD inhibitors for disease treatment. However, the regulation of the activity of PADs in vivo remains largely elusive, and we expect that much will be learned about the role of these enzymes in a normal life cycle and under pathology conditions.

[1]  E. Vossenaar,et al.  PAD, a growing family of citrullinating enzymes: genes, features and involvement in disease , 2003, BioEssays : news and reviews in molecular, cellular and developmental biology.

[2]  M. Yamada,et al.  Nuclear Localization of Peptidylarginine Deiminase V and Histone Deimination in Granulocytes* , 2002, The Journal of Biological Chemistry.

[3]  Steven Clarke,et al.  PRMT8, a New Membrane-bound Tissue-specific Member of the Protein Arginine Methyltransferase Family* , 2005, Journal of Biological Chemistry.

[4]  A. Ishigami,et al.  Increased and type II-specific expression of peptidylarginine deiminase in activated microglia but not hyperplastic astrocytes following kainic acid-evoked neurodegeneration in the rat brain , 2002, Neuroscience Letters.

[5]  Kevin M. Ryan,et al.  DRAM, a p53-Induced Modulator of Autophagy, Is Critical for Apoptosis , 2006, Cell.

[6]  A. Kawada,et al.  Transcriptional regulation of peptidylarginine deiminase expression in human keratinocytes. , 2009, Journal of dermatological science.

[7]  A. Kawada,et al.  Comparative analysis of the mouse and human peptidylarginine deiminase gene clusters reveals highly conserved non-coding segments and a new human gene, PADI6. , 2004, Gene.

[8]  M. Radic,et al.  Histone Deimination As a Response to Inflammatory Stimuli in Neutrophils1 , 2008, The Journal of Immunology.

[9]  H. Waldmann,et al.  Activation of the Raf-MEK-ERK pathway is required for neutrophil extracellular trap formation. , 2011, Nature chemical biology.

[10]  Toshiyuki Shimizu,et al.  Structural basis for Ca2+-induced activation of human PAD4 , 2004, Nature Structural &Molecular Biology.

[11]  D. Aswad,et al.  Regulation of transcription by a protein methyltransferase. , 1999, Science.

[12]  Wei Gu,et al.  Modes of p53 Regulation , 2009, Cell.

[13]  E. Girbal-Neuhauser,et al.  In the rheumatoid pannus, anti‐filaggrin autoantibodies are produced by local plasma cells and constitute a higher proportion of IgG than in synovial fluid and serum , 2000, Clinical and experimental immunology.

[14]  C. Allis,et al.  Methylation of Histone H4 at Arginine 3 Facilitating Transcriptional Activation by Nuclear Hormone Receptor , 2001, Science.

[15]  Wolfgang Fischle,et al.  Binary switches and modification cassettes in histone biology and beyond , 2003, Nature.

[16]  P. Finn,et al.  Combined inhibition of DNA methylation and histone acetylation enhances gene re-expression and drug sensitivity in vivo , 2009, British Journal of Cancer.

[17]  Yusuke Nakamura,et al.  Functional haplotypes of PADI 4 , encoding citrullinating enzyme peptidylarginine deiminase 4 , are associated with rheumatoid arthritis , 2003 .

[18]  Abdul Hakkim,et al.  Impairment of neutrophil extracellular trap degradation is associated with lupus nephritis , 2010, Proceedings of the National Academy of Sciences.

[19]  Felipe Andrade,et al.  Peptidylarginine deiminase 2, 3 and 4 have distinct specificities against cellular substrates: novel insights into autoantigen selection in rheumatoid arthritis , 2011, Annals of the rheumatic diseases.

[20]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[21]  Toshiyuki Shimizu,et al.  Structural basis for histone N-terminal recognition by human peptidylarginine deiminase 4. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[22]  A. Ishigami,et al.  cDNA cloning, gene organization and expression analysis of human peptidylarginine deiminase type I. , 2003, The Biochemical journal.

[23]  V. Nizet,et al.  Innate immunity turned inside-out: antimicrobial defense by phagocyte extracellular traps , 2009, Journal of Molecular Medicine.

[24]  G. Rogers,et al.  The enzymic derivation of citrulline residues from arginine residues in situ during the biosynthesis of hair proteins that are cross-linked by isopeptide bonds. , 1977, Advances in experimental medicine and biology.

[25]  Andrew J. Bannister,et al.  Histone Methylation Dynamic or Static? , 2002, Cell.

[26]  C. Carmona-Rivera,et al.  Neutrophil Extracellular Trap–Associated Protein Activation of the NLRP3 Inflammasome Is Enhanced in Lupus Macrophages , 2013, The Journal of Immunology.

[27]  Ramy K. Aziz,et al.  DNase Expression Allows the Pathogen Group A Streptococcus to Escape Killing in Neutrophil Extracellular Traps , 2006, Current Biology.

[28]  L. Anguish,et al.  Potential Role for PAD2 in Gene Regulation in Breast Cancer Cells , 2012, PloS one.

[29]  Paul Tempst,et al.  Histone Deimination Antagonizes Arginine Methylation , 2004, Cell.

[30]  Michael J. Bolt,et al.  Peptidylarginine deiminase 2-catalyzed histone H3 arginine 26 citrullination facilitates estrogen receptor α target gene activation , 2012, Proceedings of the National Academy of Sciences.

[31]  S. Tagami,et al.  Expression of peptidylarginine deiminase in the uterine epithelial cells of mouse is dependent on estrogen. , 1992, The Journal of biological chemistry.

[32]  G. Rogers Occurrence of Citrulline in Proteins , 1962, Nature.

[33]  J. Herman,et al.  Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer , 1999, Nature Genetics.

[34]  M. Simon,et al.  Peptidylarginine deiminase isoforms are differentially expressed in the anagen hair follicles and other human skin appendages. , 2005, The Journal of investigative dermatology.

[35]  M. Kusubata,et al.  Mouse uterus peptidylarginine deiminase is expressed in decidual cells during pregnancy , 1995, Journal of cellular biochemistry.

[36]  A. Ishigami,et al.  Immunocytochemical localization of peptidylarginine deiminase in human eosinophils and neutrophils , 2001, Journal of leukocyte biology.

[37]  K. Watanabe,et al.  Combined biochemical and immunochemical comparison of peptidylarginine deiminases present in various tissues. , 1988, Biochimica et biophysica acta.

[38]  O. Stendahl,et al.  Mycobacterium tuberculosis-Induced Neutrophil Extracellular Traps Activate Human Macrophages , 2013, Journal of Innate Immunity.

[39]  F. Mastronardi,et al.  Paclitaxel (Taxol) attenuates clinical disease in a spontaneously demyelinating transgenic mouse and induces remyelination , 2002, Multiple sclerosis.

[40]  C. Ackerley,et al.  Myelin in multiple sclerosis is developmentally immature. , 1994, The Journal of clinical investigation.

[41]  Yusuke Nakamura,et al.  Functional haplotypes of PADI4, encoding citrullinating enzyme peptidylarginine deiminase 4, are associated with rheumatoid arthritis , 2003, Nature Genetics.

[42]  R. Nagele,et al.  Neuronal PAD4 expression and protein citrullination: possible role in production of autoantibodies associated with neurodegenerative disease. , 2012, Journal of autoimmunity.

[43]  C. Supuran,et al.  Novel small molecule protein arginine deiminase 4 (PAD4) inhibitors. , 2013, Bioorganic & medicinal chemistry letters.

[44]  O. Eickelberg,et al.  CXCR2 mediates NADPH oxidase–independent neutrophil extracellular trap formation in cystic fibrosis airway inflammation , 2010, Nature Medicine.

[45]  W. V. van Venrooij,et al.  Expression and activity of citrullinating peptidylarginine deiminase enzymes in monocytes and macrophages , 2004, Annals of the rheumatic diseases.

[46]  S. Coonrod,et al.  Peptidylarginine deiminase (PAD) 6 is essential for oocyte cytoskeletal sheet formation and female fertility , 2007, Molecular and Cellular Endocrinology.

[47]  D. Wood,et al.  Rapid release and unusual stability of immunodominant peptide 45-89 from citrullinated myelin basic protein. , 1999, Biochemistry.

[48]  J. Riordan,et al.  Over‐Expression of the DM‐20 Myelin Proteolipid Causes Central Nervous System Demyelination in Transgenic Mice , 1995, Journal of neurochemistry.

[49]  V. Adoue,et al.  Update on peptidylarginine deiminases and deimination in skin physiology and severe human diseases , 2007, International journal of cosmetic science.

[50]  P. Dri,et al.  Killing by neutrophil extracellular traps: fact or folklore? , 2012, Blood.

[51]  H. Erdjument-Bromage,et al.  Histone demethylation by a family of JmjC domain-containing proteins , 2006, Nature.

[52]  R. Métivier,et al.  Functional Connection between Deimination and Deacetylation of Histones , 2009, Molecular and Cellular Biology.

[53]  Hiroshi Shimizu,et al.  Sequential reorganization of cornified cell keratin filaments involving filaggrin-mediated compaction and keratin 1 deimination. , 2002, The Journal of investigative dermatology.

[54]  Michael R. Lindberg,et al.  PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps , 2010, The Journal of experimental medicine.

[55]  K. Watanabe,et al.  Peptidylarginine deiminase in rat pituitary: sex difference, estrous cycle-related changes, and estrogen dependence. , 1989, Endocrinology.

[56]  Ruiping Liu,et al.  Peptidylarginine Deiminase Type 4 and Methyl-CpG Binding Domain 4 Polymorphisms in Chinese Patients with Rheumatoid Arthritis , 2012, The Journal of Rheumatology.

[57]  J. Boggs,et al.  Analysis of the membrane-interacting domains of myelin basic protein by hydrophobic photolabeling. , 1999, Biochimica et biophysica acta.

[58]  P. Tak,et al.  Is expression of intracellular citrullinated proteins in synovial tissue specific for rheumatoid arthritis? Comment on the article by Baeten et al. , 2002, Arthritis and rheumatism.

[59]  J. Herman,et al.  Inhibition of DNA methylation and histone deacetylation prevents murine lung cancer. , 2003, Cancer research.

[60]  Reinout Raijmakers,et al.  Increased Citrullination of Histone H3 in Multiple Sclerosis Brain and Animal Models of Demyelination: A Role for Tumor Necrosis Factor-Induced Peptidylarginine Deiminase 4 Translocation , 2006, The Journal of Neuroscience.

[61]  R. Raijmakers,et al.  Experimental autoimmune encephalomyelitis induction in peptidylarginine deiminase 2 knockout mice , 2006, The Journal of comparative neurology.

[62]  E. Girbal-Neuhauser,et al.  The Major Synovial Targets of the Rheumatoid Arthritis-Specific Antifilaggrin Autoantibodies Are Deiminated Forms of the α- and β-Chains of Fibrin1 , 2001, The Journal of Immunology.

[63]  A. Vasishta Diagnosing early-onset rheumatoid arthritis: the role of anti-CCP antibodies. , 2002, American clinical laboratory.

[64]  A. Ishigami,et al.  Molecular Characterization of Peptidylarginine Deiminase in HL-60 Cells Induced by Retinoic Acid and 1α,25-Dihydroxyvitamin D3 * , 1999, The Journal of Biological Chemistry.

[65]  P. Thompson,et al.  Activation of PAD4 in NET formation , 2012, Front. Immun..

[66]  Jinxiang Han,et al.  Increased PADI4 expression in blood and tissues of patients with malignant tumors , 2009, BMC Cancer.

[67]  C. Ackerley,et al.  Highly deiminated isoform of myelin basic protein from multiple sclerosis brain causes fragmentation of lipid vesicles , 1999, Journal of neuroscience research.

[68]  V. Corces,et al.  Protein Phosphatase 2A Activity Affects Histone H3 Phosphorylation and Transcription in Drosophila melanogaster , 2003, Molecular and Cellular Biology.

[69]  Abdul Hakkim,et al.  Restoration of NET formation by gene therapy in CGD controls aspergillosis. , 2009, Blood.

[70]  Yuan Luo,et al.  Regulation of p53 Target Gene Expression by Peptidylarginine Deiminase 4 , 2008, Molecular and Cellular Biology.

[71]  Benjamin A. Garcia,et al.  Regulation of HP1–chromatin binding by histone H3 methylation and phosphorylation , 2005, Nature.

[72]  K. Watanabe,et al.  Immunohistochemical Demonstration of Peptidylarginine Deiminase in Human Sweat Glands , 1990, The American Journal of dermatopathology.

[73]  Yuan Luo,et al.  Inhibitors and inactivators of protein arginine deiminase 4: functional and structural characterization. , 2006, Biochemistry.

[74]  G. Valesini,et al.  An overview on the genetic of rheumatoid arthritis: a never-ending story. , 2011, Autoimmunity reviews.

[75]  D. Lawrence,et al.  Monitoring of protein arginine deiminase activity by using fluorescence quenching: multicolor visualization of citrullination. , 2013, Angewandte Chemie.

[76]  Jinxiang Han,et al.  Expression of peptidylarginine deiminase type 4 (PAD4) in various tumors , 2006, Molecular carcinogenesis.

[77]  L. Ware,et al.  Peptidylarginine Deiminase 2 Suppresses Inhibitory κB Kinase Activity in Lipopolysaccharide-stimulated RAW 264.7 Macrophages* , 2010, The Journal of Biological Chemistry.

[78]  W. Fast,et al.  Citrullination of Inhibitor of Growth 4 (ING4) by Peptidylarginine Deminase 4 (PAD4) Disrupts the Interaction between ING4 and p53* , 2011, The Journal of Biological Chemistry.

[79]  M. Moscarello,et al.  Deimination of Human Myelin Basic Protein by a Peptidylarginine Deiminase from Bovine Brain , 1993, Journal of neurochemistry.

[80]  H. Hirano,et al.  Deimination of arginine residues in nucleophosmin/B23 and histones in HL-60 granulocytes. , 2002, Biochemical and biophysical research communications.

[81]  R. Roeder,et al.  Ordered Cooperative Functions of PRMT1, p300, and CARM1 in Transcriptional Activation by p53 , 2004, Cell.

[82]  M. Moscarello,et al.  A novel microtubule independent effect of paclitaxel: the inhibition of peptidylarginine deiminase from bovine brain. , 1998, Biochimica et biophysica acta.

[83]  P. Thompson,et al.  Synthesis and screening of a haloacetamidine containing library to identify PAD4 selective inhibitors. , 2012, ACS chemical biology.

[84]  P. Thompson,et al.  Genome-Wide Analysis Reveals PADI4 Cooperates with Elk-1 to Activate c-Fos Expression in Breast Cancer Cells , 2011, PLoS genetics.

[85]  Ali Shilatifard,et al.  Chromatin modifications by methylation and ubiquitination: implications in the regulation of gene expression. , 2006, Annual review of biochemistry.

[86]  Michael Karin,et al.  p53 Target Genes Sestrin1 and Sestrin2 Connect Genotoxic Stress and mTOR Signaling , 2009, Cell.

[87]  Brian D. Strahl,et al.  Methylation of histone H4 at arginine 3 occurs in vivo and is mediated by the nuclear receptor coactivator PRMT1 , 2001, Current Biology.

[88]  A. Kawada,et al.  Molecular cloning of cDNAs of mouse peptidylarginine deiminase type I, type III and type IV, and the expression pattern of type I in mouse. , 2001, European journal of biochemistry.

[89]  A. Ishigami,et al.  Peptidylarginine deiminase and protein citrullination in prion diseases , 2013, Prion.

[90]  Yi Tang,et al.  Tip60-dependent acetylation of p53 modulates the decision between cell-cycle arrest and apoptosis. , 2006, Molecular cell.

[91]  Koen Vos,et al.  How to diagnose rheumatoid arthritis early: a prediction model for persistent (erosive) arthritis. , 2002, Arthritis and rheumatism.

[92]  Xiaomin Bao,et al.  The JIL-1 histone H3S10 kinase regulates dimethyl H3K9 modifications and heterochromatic spreading in Drosophila , 2005, Development.

[93]  A. Zychlinsky,et al.  Neutrophil Extracellular Traps Kill Bacteria , 2004, Science.

[94]  Yang Shi,et al.  Histone Demethylation Mediated by the Nuclear Amine Oxidase Homolog LSD1 , 2004, Cell.

[95]  Yusuke Nakamura,et al.  Regulation of protein Citrullination through p53/PADI4 network in DNA damage response. , 2009, Cancer research.

[96]  J. Herman,et al.  Synergistic activation of functional estrogen receptor (ER)-α by DNA methyltransferase and histone deacetylase inhibition in human ER-α-negative breast cancer cells , 2001 .

[97]  M. Feldmann,et al.  Autoimmunity to specific citrullinated proteins gives the first clues to the etiology of rheumatoid arthritis , 2010, Immunological reviews.

[98]  J. Bilbao,et al.  Acute multiple sclerosis (marburg type) is associated with developmentally immature myelin basic protein , 1996, Annals of neurology.

[99]  F. Mastronardi,et al.  Peptidylarginine deiminase: a candidate factor in demyelinating disease , 2002, Journal of neurochemistry.

[100]  S. Horibata,et al.  Role for peptidylarginine deiminase enzymes in disease and female reproduction. , 2012, The Journal of reproduction and development.

[101]  A. Yoshiki,et al.  Human peptidylarginine deiminase type III: molecular cloning and nucleotide sequence of the cDNA, properties of the recombinant enzyme, and immunohistochemical localization in human skin. , 2000, The Journal of investigative dermatology.

[102]  Sai Kumar Chakka,et al.  Novel inhibitors of protein arginine deiminase with potential activity in multiple sclerosis animal model. , 2013, Journal of medicinal chemistry.

[103]  M. Dougados,et al.  Anticitrullinated protein/peptide antibody assays in early rheumatoid arthritis for predicting five year radiographic damage , 2003, Annals of the rheumatic diseases.

[104]  T. Senshu,et al.  Peptidylarginine deiminase in rat and mouse hemopoietic cells , 1990, Experientia.

[105]  V. Nizet,et al.  Nuclease Expression by Staphylococcus aureus Facilitates Escape from Neutrophil Extracellular Traps , 2010, Journal of Innate Immunity.

[106]  M. M. Pires,et al.  Facile Fluorescence‐Based Detection of PAD4‐Mediated Citrullination , 2013, Chembiochem : a European journal of chemical biology.

[107]  L. Trouw,et al.  Closing the serological gap: promising novel biomarkers for the early diagnosis of rheumatoid arthritis. , 2012, Autoimmunity reviews.

[108]  S. Coonrod,et al.  Regulation of mouse oocyte microtubule and organelle dynamics by PADI6 and the cytoplasmic lattices. , 2011, Developmental biology.

[109]  C. Allis,et al.  The language of covalent histone modifications , 2000, Nature.

[110]  C. Allis,et al.  Roles of histone acetyltransferases and deacetylases in gene regulation , 1998, BioEssays : news and reviews in molecular, cellular and developmental biology.

[111]  A. Carrillo-Vico,et al.  Contribution of Myelin Autoantigen Citrullination to T Cell Autoaggression in the Central Nervous System , 2010, The Journal of Immunology.

[112]  C. Prives,et al.  Blinded by the Light: The Growing Complexity of p53 , 2009, Cell.

[113]  W. Nacken,et al.  Neutrophil Extracellular Traps Contain Calprotectin, a Cytosolic Protein Complex Involved in Host Defense against Candida albicans , 2009, PLoS pathogens.

[114]  C. Allis,et al.  Histone hypercitrullination mediates chromatin decondensation and neutrophil extracellular trap formation , 2009, The Journal of cell biology.

[115]  C. Ackerley,et al.  Modifications of myelin basic protein in DM20 transgenic mice are similar to those in myelin basic protein from multiple sclerosis. , 1996, The Journal of clinical investigation.

[116]  R. Schasfoort,et al.  Mapping of citrullinated fibrinogen B-cell epitopes in rheumatoid arthritis by imaging surface plasmon resonance , 2010, Arthritis research & therapy.

[117]  E. Morselli,et al.  Stimulation of autophagy by the p53 target gene Sestrin2 , 2009, Cell cycle.

[118]  S. Coonrod,et al.  Potential Role for Peptidylarginine Deiminase 2 (PAD2) in Citrullination of Canine Mammary Epithelial Cell Histones , 2010, PloS one.

[119]  Carl Nathan,et al.  Neutrophils and immunity: challenges and opportunities , 2006, Nature Reviews Immunology.

[120]  Peter A. Jones,et al.  Cancer epigenetics: modifications, screening, and therapy. , 2008, Annual review of medicine.

[121]  G. Harauz,et al.  Deimination of myelin basic protein. 1. Effect of deimination of arginyl residues of myelin basic protein on its structure and susceptibility to digestion by cathepsin D. , 2000, Biochemistry.

[122]  A. Ishigami,et al.  Protein deimination in the rat brain after kainate administration: citrulline-containing proteins as a novel marker of neurodegeneration , 2001, Neuroscience Letters.

[123]  M. V. van Boekel,et al.  Autoantibody systems in rheumatoid arthritis: specificity, sensitivity and diagnostic value , 2001, Arthritis research.

[124]  György Nagy,et al.  Citrullination under physiological and pathological conditions. , 2012, Joint, bone, spine : revue du rhumatisme.

[125]  V. Adoue,et al.  Peptidylarginine deiminases and deimination in biology and pathology: relevance to skin homeostasis. , 2006, Journal of dermatological science.

[126]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[127]  C. Ackerley,et al.  Myelin localization of peptidylarginine deiminases 2 and 4: comparison of PAD2 and PAD4 activities , 2008, Laboratory Investigation.

[128]  A. Ishida-Yamamoto,et al.  Decreased deiminated keratin K1 in psoriatic hyperproliferative epidermis. , 2000, The Journal of investigative dermatology.

[129]  Jing Hu,et al.  Anticancer Peptidylarginine Deiminase (PAD) Inhibitors Regulate the Autophagy Flux and the Mammalian Target of Rapamycin Complex 1 Activity* , 2012, The Journal of Biological Chemistry.

[130]  Guang-Yaw Liu,et al.  Functional Roles of the Non-Catalytic Calcium-Binding Sites in the N-Terminal Domain of Human Peptidylarginine Deiminase 4 , 2013, PloS one.

[131]  L. A. Bush,et al.  ePAD, an oocyte and early embryo-abundant peptidylarginine deiminase-like protein that localizes to egg cytoplasmic sheets. , 2003, Developmental biology.

[132]  A. Suzuki,et al.  Localization of peptidylarginine deiminase 4 (PADI4) and citrullinated protein in synovial tissue of rheumatoid arthritis. , 2005, Rheumatology.

[133]  C. Allis,et al.  Covalent histone modifications — miswritten, misinterpreted and mis-erased in human cancers , 2010, Nature Reviews Cancer.

[134]  Yusuke Nakamura,et al.  Regulation of histone modification and chromatin structure by the p53–PADI4 pathway , 2012, Nature Communications.

[135]  E. Vossenaar,et al.  Citrullination, a possible functional link between susceptibility genes and rheumatoid arthritis , 2003, Arthritis research & therapy.

[136]  K. Watanabe,et al.  Isolation and characterization of cDNA clones encoding rat skeletal muscle peptidylarginine deiminase. , 1989, The Journal of biological chemistry.

[137]  C. Ackerley,et al.  Peptidylarginine deiminase 2 ( PAD 2 ) overexpression in transgenic mice leads to myelin loss in the central nervous system , 2022 .

[138]  Steven Clarke,et al.  Human PAD4 Regulates Histone Arginine Methylation Levels via Demethylimination , 2004, Science.

[139]  P. Li,et al.  Coordination of PAD4 and HDAC2 in the regulation of p53-target gene expression , 2010, Oncogene.

[140]  Steven R. Shave,et al.  Discovery of a new class of inhibitors for the protein arginine deiminase type 4 (PAD4) by structure-based virtual screening , 2012, BMC Bioinformatics.

[141]  A. Zychlinsky,et al.  Neutrophil extracellular traps: Is immunity the second function of chromatin? , 2012, The Journal of cell biology.

[142]  Peter A. Jones,et al.  Epigenetics in cancer. , 2010, Carcinogenesis.

[143]  M. Esteller,et al.  Cancer epigenomics: beyond genomics. , 2012, Current opinion in genetics & development.

[144]  C. Muchardt,et al.  Citrullination of Histone H3 Interferes with HP1-Mediated Transcriptional Repression , 2012, PLoS genetics.

[145]  T. Kouzarides,et al.  Methylation at arginine 17 of histone H3 is linked to gene activation , 2002, EMBO reports.

[146]  M. Radic,et al.  Neutrophil Extracellular Traps: Double-Edged Swords of Innate Immunity , 2012, Journal of Immunology.

[147]  A. Segal,et al.  How neutrophils kill microbes. , 2005, Annual review of immunology.

[148]  D. Boumpas,et al.  Anti-Citrulline Antibodies in the Diagnosis and Prognosis of Rheumatoid Arthritis: Evolving Concepts , 2007, Critical reviews in clinical laboratory sciences.

[149]  Wolfgang Huber,et al.  Combinatorial effects of four histone modifications in transcription and differentiation. , 2008, Genomics.

[150]  Handong Zheng,et al.  PAD4 mediated histone hypercitrullination induces heterochromatin decondensation and chromatin unfolding to form neutrophil extracellular trap-like structures , 2012, Front. Immun..

[151]  C. Ackerley,et al.  Inhibition of peptidyl-arginine deiminases reverses protein-hypercitrullination and disease in mouse models of multiple sclerosis , 2012, Disease Models & Mechanisms.

[152]  E. Lapointe,et al.  Rheumatoid arthritis specific anti-Sa antibodies target citrullinated vimentin , 2004, Arthritis research & therapy.

[153]  C. Allis,et al.  Dynamic alterations of specific histone modifications during early murine development , 2004, Journal of Cell Science.

[154]  R. Wait,et al.  Synovial fluid is a site of citrullination of autoantigens in inflammatory arthritis. , 2008, Arthritis and rheumatism.

[155]  J. Hartwig,et al.  Extracellular DNA traps promote thrombosis , 2010, Proceedings of the National Academy of Sciences.