The HadGEM2 family of Met Office Unified Model climate configurations

Abstract. We describe the HadGEM2 family of climate configurations of the Met Office Unified Model, MetUM. The concept of a model "family" comprises a range of specific model configurations incorporating different levels of complexity but with a common physical framework. The HadGEM2 family of configurations includes atmosphere and ocean components, with and without a vertical extension to include a well-resolved stratosphere, and an Earth-System (ES) component which includes dynamic vegetation, ocean biology and atmospheric chemistry. The HadGEM2 physical model includes improvements designed to address specific systematic errors encountered in the previous climate configuration, HadGEM1, namely Northern Hemisphere continental temperature biases and tropical sea surface temperature biases and poor variability. Targeting these biases was crucial in order that the ES configuration could represent important biogeochemical climate feedbacks. Detailed descriptions and evaluations of particular HadGEM2 family members are included in a number of other publications, and the discussion here is limited to a summary of the overall performance using a set of model metrics which compare the way in which the various configurations simulate present-day climate and its variability.

[1]  S. Wofsy,et al.  Mean Ages of Stratospheric Air Derived from in Situ Observations of Co2, Ch4, and N2o , 2013 .

[2]  M. Palmer,et al.  Detectability of changes to the Atlantic meridional overturning circulation in the Hadley Centre Climate Models , 2012, Climate Dynamics.

[3]  Andrew Gettelman,et al.  Climate change projections and stratosphere–troposphere interaction , 2012, Climate Dynamics.

[4]  J. Kay,et al.  The Arctic’s rapidly shrinking sea ice cover: a research synthesis , 2012, Climatic Change.

[5]  C. Jones,et al.  Development and evaluation of an Earth-System model - HadGEM2 , 2011 .

[6]  O. Boucher,et al.  Aerosol forcing in the Climate Model Intercomparison Project (CMIP5) simulations by HadGEM2‐ES and the role of ammonium nitrate , 2011 .

[7]  Sean Milton,et al.  Adaptive detrainment in a convective parametrization , 2011 .

[8]  S. Schubert,et al.  MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications , 2011 .

[9]  J. Lamarque,et al.  The HadGEM2-ES implementation of CMIP5 centennial simulations , 2011 .

[10]  J. Dufresne,et al.  Climate change under aggressive mitigation: the ENSEMBLES multi-model experiment , 2011 .

[11]  Adam A. Scaife,et al.  Skilful multi-year predictions of Atlantic hurricane frequency , 2010 .

[12]  Thomas Reichler,et al.  Analysis and Reduction of Systematic Errors through a Seamless Approach to Modeling Weather and Climate , 2010 .

[13]  J. Marotzke,et al.  Temporal Variability of the Atlantic Meridional Overturning Circulation at 26.5°N , 2007, Science.

[14]  Chris Harris,et al.  Design and implementation of the infrastructure of HadGEM3: the next-generation Met Office climate modelling system , 2010 .

[15]  Adam A. Scaife,et al.  Improved predictability of stratospheric sudden warming events in an atmospheric general circulation model with enhanced stratospheric resolution , 2010 .

[16]  I. Totterdell,et al.  Can we trust empirical marine DMS parameterisations within projections of future climate , 2010 .

[17]  C. J. Neumann,et al.  The International Best Track Archive for Climate Stewardship (IBTrACS): unifying tropical cyclone data. , 2010 .

[18]  Shian-Jiann Lin,et al.  Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50-km resolution GCM. , 2009 .

[19]  G. Meehl,et al.  A Unified Modeling Approach to Climate System Prediction , 2009 .

[20]  Andrew J. Watson,et al.  Corrigendum to "Climatological mean and decadal change in surface ocean pCO2, and net sea-air CO2 flux over the global oceans" [Deep Sea Res. II 56 (2009) 554-577] , 2009 .

[21]  Steve M. Easterbrook,et al.  Engineering the Software for Understanding Climate Change , 2009, Computing in Science & Engineering.

[22]  Adam A. Scaife,et al.  Impact of the QBO on surface winter climate , 2009 .

[23]  Andrew Charlton-Perez,et al.  Stratospheric Communication of El Niño Teleconnections to European Winter , 2009 .

[24]  Interactions between tropospheric chemistry and climate model temperature and humidity biases , 2009 .

[25]  A. Wittenberg Are historical records sufficient to constrain ENSO simulations? , 2009 .

[26]  David P. Stevens,et al.  Impact of Resolution on the Tropical Pacific Circulation in a Matrix of Coupled Models , 2009 .

[27]  Simon Wilson,et al.  U.K. HiGEM: The New U.K. High-Resolution Global Environment Model― Model Description and Basic Evaluation , 2009 .

[28]  L. Polvani,et al.  Stratosphere–Troposphere Coupling in a Relatively Simple AGCM: The Importance of Stratospheric Variability , 2009 .

[29]  B. Hoskins,et al.  The influence of tropical sea surface temperatures and precipitation on north Pacific atmospheric blocking , 2009 .

[30]  Adam A. Scaife,et al.  The role of the stratosphere in the European climate response to El Niño , 2009 .

[31]  Peter R. J. North,et al.  New Vegetation Albedo Parameters and Global Fields of Soil Background Albedo Derived from MODIS for Use in a Climate Model , 2009 .

[32]  Andrew J. Watson,et al.  Corrigendum to Climatological mean and decadal change in surface ocean pCO2, and net sea―air CO2 flux over the global oceans , 2009 .

[33]  Alejandro C. Olivieri,et al.  Validation and Error , 2009 .

[34]  E. Atlas,et al.  Age of stratospheric air unchanged within uncertainties over the past 30 years , 2009 .

[35]  Alejandro Bodas-Salcedo,et al.  Evaluation of the Surface Radiation Budget in the Atmospheric Component of the Hadley Centre Global Environmental Model (HadGEM1) , 2008 .

[36]  Douglas B. Clark,et al.  Representing the effects of subgrid variability of soil moisture on runoff generation in a land surface model , 2008 .

[37]  Stephen F. Ackley,et al.  Thickness distribution of Antarctic sea ice , 2008 .

[38]  Donald B. Percival,et al.  The decline in arctic sea‐ice thickness: Separating the spatial, annual, and interannual variability in a quarter century of submarine data , 2008 .

[39]  D. N. Walters,et al.  Upgrades to the Boundary-Layer Scheme in the Met Office Numerical Weather Prediction Model , 2008 .

[40]  T. Reichler,et al.  Uncertainties in the climate mean state of global observations, reanalyses, and the GFDL climate model , 2008 .

[41]  T. Reichler,et al.  How Well Do Coupled Models Simulate Today's Climate? , 2008 .

[42]  Paul Berrisford,et al.  Towards a climate data assimilation system: status update of ERA-interim , 2008 .

[43]  Michael G. Bosilovich,et al.  NASA’s modern era retrospective-analysis for research and applications: integrating Earth observations , 2008 .

[44]  C. S. Wong,et al.  Climatological mean and decadal change in surface ocean pCO2, and net seaair CO2 flux over the global oceans , 2009 .

[45]  Gary S. E. Lagerloef,et al.  Validation and Error Analysis of OSCAR Sea Surface Currents , 2007 .

[46]  John M. Edwards,et al.  Oceanic latent heat fluxes: Consistency with the atmospheric hydrological and energy cycles and general circulation modeling , 2007 .

[47]  W. Randel,et al.  A stratospheric ozone profile data set for 1979–2005: Variability, trends, and comparisons with column ozone data , 2007 .

[48]  William H. Lipscomb,et al.  Evaluation of the sea ice simulation in a new coupled atmosphere‐ocean climate model (HadGEM1) , 2006 .

[49]  Adam A. Scaife,et al.  Simulations of anthropogenic change in the strength of the Brewer–Dobson circulation , 2006 .

[50]  R. Betts,et al.  The impact of climate change on global river flow in HadGEM1 simulations , 2006 .

[51]  Ramakrishna R. Nemani,et al.  Evaluation of remote sensing based terrestrial productivity from MODIS using regional tower eddy flux network observations , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[52]  Gill Martin,et al.  The Physical Properties of the Atmosphere in the New Hadley Centre Global Environmental Model (HadGEM1). Part II: Aspects of Variability and Regional Climate , 2006 .

[53]  G. Martin,et al.  The Physical Properties of the Atmosphere in the New Hadley Centre Global Environmental Model (HadGEM1). Part I: Model Description and Global Climatology , 2006 .

[54]  Michel Crucifix,et al.  The new hadley centre climate model (HadGEM1) : Evaluation of coupled simulations , 2006 .

[55]  R. Schnur,et al.  Climate-carbon cycle feedback analysis: Results from the C , 2006 .

[56]  A. Sterl,et al.  The ERA‐40 re‐analysis , 2005 .

[57]  Adam A. Scaife,et al.  A stratospheric influence on the winter NAO and North Atlantic surface climate , 2005 .

[58]  Maosheng Zhao,et al.  Improvements of the MODIS terrestrial gross and net primary production global data set , 2005 .

[59]  P. Cox,et al.  Global climate change and soil carbon stocks; predictions from two contrasting models for the turnover of organic carbon in soil , 2005 .

[60]  Xungang Yin,et al.  Comparison of the GPCP and CMAP Merged Gauge-Satellite Monthly Precipitation Products for the Period 1979-2001 , 2004 .

[61]  Peter M. Cox,et al.  Climate feedback from wetland methane emissions , 2004 .

[62]  M. Webb,et al.  Quantification of modelling uncertainties in a large ensemble of climate change simulations , 2004, Nature.

[63]  J. Janowiak,et al.  The Version 2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979-Present) , 2003 .

[64]  Neil Peacock,et al.  High interannual variability of sea ice thickness in the Arctic region , 2003, Nature.

[65]  Elizabeth C. Kent,et al.  Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century , 2003 .

[66]  P. Formenti,et al.  The mean physical and optical properties of regional haze dominated by biomass burning aerosol measured from the C-130 aircraft during SAFARI 2000 , 2003 .

[67]  Richard Essery,et al.  Explicit representation of subgrid heterogeneity in a GCM land surface scheme , 2003 .

[68]  S. F. Mueller Seasonal Aerosol Sulfate Trends for Selected Regions of the United States , 2003, Journal of the Air & Waste Management Association.

[69]  Peter M. Inness,et al.  Simulation of the Madden–Julian Oscillation in a Coupled General Circulation Model. Part I: Comparison with Observations and an Atmosphere-Only GCM , 2003 .

[70]  J. Dachs,et al.  Global ocean emission of dimethylsulfide predicted from biogeophysical data , 2002 .

[71]  Donald K. Perovich,et al.  Seasonal evolution of the albedo of multiyear Arctic sea ice , 2002 .

[72]  Richard Swinbank,et al.  Impact of a Spectral Gravity Wave Parameterization on the Stratosphere in the Met Office Unified Model , 2002 .

[73]  Andrew S. Jones,et al.  Indirect sulphate aerosol forcing in a climate model with an interactive sulphur cycle , 2001 .

[74]  S. Woodward,et al.  Modeling the atmospheric life cycle and radiative impact of mineral dust in the Hadley Centre climate model , 2001 .

[75]  J. Curry,et al.  Applications of SHEBA/FIRE data to evaluation of snow/ice albedo parameterizations , 2001 .

[76]  T. Eck,et al.  An emerging ground-based aerosol climatology: Aerosol optical depth from AERONET , 2001 .

[77]  I. Totterdell,et al.  Production and export in a global ocean ecosystem model , 2001 .

[78]  Kevin Hamilton,et al.  The quasi‐biennial oscillation , 2001 .

[79]  K. Taylor Summarizing multiple aspects of model performance in a single diagram , 2001 .

[80]  Frank O. Bryan,et al.  Equatorial Circulation of a Global Ocean Climate Model with Anisotropic Horizontal Viscosity , 2001 .

[81]  H. Bryden,et al.  Chapter 6.1 Ocean heat transport , 2001 .

[82]  Global Soil Data Task,et al.  Global Gridded Surfaces of Selected Soil Characteristics (IGBP-DIS) , 2000 .

[83]  R. Betts,et al.  Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model , 2000, Nature.

[84]  Adam A. Scaife,et al.  Realistic quasi‐biennial oscillations in a simulation of the global climate , 2000 .

[85]  J. Haigh,et al.  An efficient and accurate correlated‐k parameterization of infrared radiative transfer for troposphere–stratosphere–mesosphere GCMs , 2000 .

[86]  Richard Neale,et al.  A standard test for AGCMs including their physical parametrizations: I: the proposal , 2000 .

[87]  Jennifer A. Logan,et al.  An analysis of ozonesonde data for the troposphere : recommendations for testing 3-D models and development of a gridded climatology for tropospheric ozone , 1999 .

[88]  Giacomo R. DiTullio,et al.  A global database of sea surface dimethylsulfide (DMS) measurements and a procedure to predict sea surface DMS as a function of latitude, longitude, and month , 1999 .

[89]  A. Bondeau,et al.  Comparing global models of terrestrial net primary productivity (NPP): overview and key results , 1999 .

[90]  R. Betts,et al.  The impact of new land surface physics on the GCM simulation of climate and climate sensitivity , 1999 .

[91]  P. Jones,et al.  Representing Twentieth-Century Space–Time Climate Variability. Part I: Development of a 1961–90 Mean Monthly Terrestrial Climatology , 1999 .

[92]  Adrian Simmons,et al.  Stratospheric water vapour and tropical tropopause temperatures in Ecmwf analyses and multi‐year simulations , 1999 .

[93]  S. M. Marlais,et al.  An Overview of the Results of the Atmospheric Model Intercomparison Project (AMIP I) , 1999 .

[94]  B. McArthur,et al.  Baseline surface radiation network (BSRN/WCRP) New precision radiometry for climate research , 1998 .

[95]  P. Xie,et al.  Global Precipitation: A 17-Year Monthly Analysis Based on Gauge Observations, Satellite Estimates, and Numerical Model Outputs , 1997 .

[96]  A. Brown,et al.  Non-local mixing of momentum in the convective boundary layer , 1997 .

[97]  Kevin I. Hodges,et al.  A General Method for Tracking Analysis and Its Application to Meteorological Data , 1994 .

[98]  W. Malm,et al.  Spatial and seasonal trends in particle concentration and optical extinction in the United States , 1994 .

[99]  B. Barkstrom,et al.  Seasonal variation of cloud radiative forcing derived from the Earth Radiation Budget Experiment , 1990 .

[100]  P. Rowntree,et al.  A Mass Flux Convection Scheme with Representation of Cloud Ensemble Characteristics and Stability-Dependent Closure , 1990 .

[101]  Robert P. Garrett,et al.  Sea ice thickness distribution in the Arctic Ocean , 1987 .

[102]  J. Moum,et al.  Mixing in the Main Thermocline , 1986 .

[103]  A. Henderson‐sellers,et al.  A global archive of land cover and soils data for use in general circulation climate models , 1985 .

[104]  G. Hornberger,et al.  Empirical equations for some soil hydraulic properties , 1978 .

[105]  R. Mcinturff Stratospheric warmings: Synoptic, dynamic and general-circulation aspects , 1978 .

[106]  M. Blackmon,et al.  A Climatological Spectral Study of the 500 mb Geopotential Height of the Northern Hemisphere. , 1976 .