Single-molecule analysis using DNA origami.

During the last two decades, scientists have developed various methods that allow the detection and manipulation of single molecules, which have also been called "in singulo" approaches. Fundamental understanding of biochemical reactions, folding of biomolecules, and the screening of drugs were achieved by using these methods. Single-molecule analysis was also performed in the field of DNA nanotechnology, mainly by using atomic force microscopy. However, until recently, the approaches used commonly in nanotechnology adopted structures with a dimension of 10-20 nm, which is not suitable for many applications. The recent development of scaffolded DNA origami by Rothemund made it possible for the construction of larger defined assemblies. One of the most salient features of the origami method is the precise addressability of the structures formed: Each staple can serve as an attachment point for different kinds of nanoobjects. Thus, the method is suitable for the precise positioning of various functionalities and for the single-molecule analysis of many chemical and biochemical processes. Here we summarize recent progress in the area of single-molecule analysis using DNA origami and discuss the future directions of this research.

[1]  Per Thyberg,et al.  Direct quantification of mRNA expression levels using single molecule detection. , 2004, Journal of biotechnology.

[2]  Dan V. Nicolau,et al.  Microarray technology and its applications , 2005 .

[3]  Philip Tinnefeld,et al.  DNA‐Origami als Nanometerlineal für die superauflösende Mikroskopie , 2009 .

[4]  Pui-Yan Kwok,et al.  Single‐molecule analysis for molecular haplotyping , 2004, Human mutation.

[5]  Viruthachalam Thiagarajan,et al.  NBD‐Based Green Fluorescent Ligands for Typing of Thymine‐Related SNPs by Using an Abasic Site‐Containing Probe DNA , 2009, Chembiochem : a European journal of chemical biology.

[6]  K. Namba,et al.  DNA prism structures constructed by folding of multiple rectangular arms. , 2009, Journal of the American Chemical Society.

[7]  Masayuki Endo,et al.  A versatile DNA nanochip for direct analysis of DNA base-excision repair. , 2010, Angewandte Chemie.

[8]  Hao Yan,et al.  Self-Assembled Water-Soluble Nucleic Acid Probe Tiles for Label-Free RNA Hybridization Assays , 2008, Science.

[9]  Kurt V. Gothelf,et al.  Single molecule atomic force microscopy studies of photosensitized singlet oxygen behavior on a DNA origami template. , 2010, ACS nano.

[10]  P. Rothemund Folding DNA to create nanoscale shapes and patterns , 2006, Nature.

[11]  Thomas D Pollard,et al.  Single Molecule Kinetic Analysis of Actin Filament Capping , 2007, Journal of Biological Chemistry.

[12]  Lulu Qian,et al.  Asymmetric DNA Origami for Spatially Addressable and Index‐Free Solution‐Phase DNA Chips , 2010, Advanced materials.

[13]  Wael Mamdouh,et al.  A novel secondary DNA binding site in human topoisomerase I unravelled by using a 2D DNA origami platform. , 2010, ACS nano.

[14]  Hiroshi Sugiyama,et al.  Folding pathways of human telomeric type-1 and type-2 G-quadruplex structures. , 2010, Journal of the American Chemical Society.

[15]  A. Syvänen Accessing genetic variation: genotyping single nucleotide polymorphisms , 2001, Nature Reviews Genetics.

[16]  Jem J Rowland,et al.  Single-nucleotide polymorphism detection using nanomolar nucleotides and single-molecule fluorescence. , 2004, Analytical biochemistry.

[17]  Hiroshi Sugiyama,et al.  Overview of Formation of G‐Quadruplex Structures , 2010, Current protocols in nucleic acid chemistry.

[18]  Shawn M. Douglas,et al.  Self-assembly of DNA into nanoscale three-dimensional shapes , 2009, Nature.

[19]  Shawn M. Douglas,et al.  Multilayer DNA origami packed on a square lattice. , 2009, Journal of the American Chemical Society.

[20]  Hao Yan,et al.  Gold nanoparticle self-similar chain structure organized by DNA origami. , 2010, Journal of the American Chemical Society.

[21]  Francis S. Collins,et al.  Variations on a Theme: Cataloging Human DNA Sequence Variation , 1997, Science.

[22]  Päivi Törmä,et al.  DNA origami as a nanoscale template for protein assembly , 2009, Nanotechnology.

[23]  Henry Hess,et al.  Toward Devices Powered by Biomolecular Motors , 2006, Science.

[24]  M. Kasper,et al.  RNA expression profiling at the single molecule level. , 2006, Genome research.

[25]  Guliang Wang,et al.  Non-B DNA structure-induced genetic instability. , 2006, Mutation research.

[26]  Norio Teramae,et al.  Effect of substituents of alloxazine derivatives on the selectivity and affinity for adenine in AP-site-containing DNA duplexes. , 2010, Organic & biomolecular chemistry.

[27]  H. Hansma,et al.  Building Programmable Jigsaw Puzzles with RNA , 2004, Science.

[28]  Hao Yan,et al.  Immobilization and one-dimensional arrangement of virus capsids with nanoscale precision using DNA origami. , 2010, Nano letters.

[29]  Richard Fishel,et al.  Single-Molecule Analysis Reveals the Kinetics and Physiological Relevance of MutL-ssDNA Binding , 2010, PloS one.

[30]  Carlos Bustamante,et al.  In singulo biochemistry: when less is more. , 2008, Annual review of biochemistry.

[31]  Ronald W. Davis,et al.  Quantitative Monitoring of Gene Expression Patterns with a Complementary DNA Microarray , 1995, Science.

[32]  Koen Visscher,et al.  Single-molecule techniques for drug discovery. , 2004, Assay and drug development technologies.

[33]  Xiaodong Cheng,et al.  Structure and function of DNA methyltransferases. , 1995, Annual review of biophysics and biomolecular structure.

[34]  Norio Teramae,et al.  A Pyrazine-based Fluorescence-enhancing Ligand with a High Selectivity for Thymine in AP Site-containing DNA Duplexes , 2008, Analytical sciences : the international journal of the Japan Society for Analytical Chemistry.

[35]  Sivaraj Sivaramakrishnan,et al.  Single-molecule dual-beam optical trap analysis of protein structure and function. , 2010, Methods in enzymology.

[36]  E Lai,et al.  Application of SNP technologies in medicine: lessons learned and future challenges. , 2001, Genome research.

[37]  Philip Tinnefeld,et al.  Single-molecule four-color FRET visualizes energy-transfer paths on DNA origami. , 2011, Journal of the American Chemical Society.

[38]  David Neff,et al.  NTA directed protein nanopatterning on DNA Origami nanoconstructs. , 2009, Journal of the American Chemical Society.

[39]  Norio Teramae,et al.  Effect of methyl substitution in a ligand on the selectivity and binding affinity for a nucleobase: a case study with isoxanthopterin and its derivatives. , 2009, Bioorganic & medicinal chemistry.

[40]  Jean-Louis Mergny,et al.  G-quadruplex DNA: A target for drug design , 1998, Nature Medicine.

[41]  Friedrich C. Simmel,et al.  DNA Origami as a Nanoscopic Ruler for Super‐Resolution Microscopy , 2009 .

[42]  N. Seeman,et al.  A precisely controlled DNA biped walking device , 2004 .

[43]  Carlos Bustamante,et al.  Unfolding single RNA molecules: bridging the gap between equilibrium and non-equilibrium statistical thermodynamics , 2005, Quarterly Reviews of Biophysics.

[44]  H. Sugiyama,et al.  Programmed Two-dimensional Self- Assembly of Multiple Dna Origami Jigsaw Pieces Keywords: Dna Origami · Programmed 2d Self-assembly · Jigsaw Pieces · Nanotechnology · Fast-scanning Atomic Force Microscopy , 2022 .

[45]  Thomas Tørring,et al.  DNA-templated covalent coupling of G4 PAMAM dendrimers. , 2010, Journal of the American Chemical Society.

[46]  J. Kjems,et al.  Self-assembly of a nanoscale DNA box with a controllable lid , 2009, Nature.

[47]  Masayuki Endo,et al.  Direct AFM observation of an opening event of a DNA cuboid constructed via a prism structure. , 2011, Organic & biomolecular chemistry.

[48]  T. Ha,et al.  A survey of single-molecule techniques in chemical biology. , 2007, ACS chemical biology.

[49]  Tim Liedl,et al.  Single-molecule FRET ruler based on rigid DNA origami blocks. , 2011, Chemphyschem : a European journal of chemical physics and physical chemistry.

[50]  Zheng Yang,et al.  Mutational analysis of the preferential binding of human topoisomerase I to supercoiled DNA , 2009, The FEBS journal.

[51]  Masayuki Endo,et al.  Photo-cross-linking-assisted thermal stability of DNA origami structures and its application for higher-temperature self-assembly. , 2011, Journal of the American Chemical Society.

[52]  Shawn M. Douglas,et al.  Folding DNA into Twisted and Curved Nanoscale Shapes , 2009, Science.

[53]  Hao Yan,et al.  A route to scale up DNA origami using DNA tiles as folding staples. , 2010, Angewandte Chemie.

[54]  P. Kwok,et al.  Reading bits of genetic information: methods for single-nucleotide polymorphism analysis. , 1998, Genome research.

[55]  Gary Parkinson,et al.  Telomere maintenance as a target for anticancer drug discovery , 2002, Nature Reviews Drug Discovery.

[56]  Erik Winfree,et al.  Self-assembly of carbon nanotubes into two-dimensional geometries using DNA origami templates. , 2010, Nature nanotechnology.

[57]  Akinori Kuzuya,et al.  Design and construction of a box-shaped 3D-DNA origami. , 2009, Chemical communications.

[58]  Akimitsu Okamoto,et al.  Design of base-discriminating fluorescent nucleoside and its application to t/c SNP typing. , 2003, Journal of the American Chemical Society.

[59]  Akinori Kuzuya,et al.  Precisely Programmed and Robust 2D Streptavidin Nanoarrays by Using Periodical Nanometer‐Scale Wells Embedded in DNA Origami Assembly , 2009, Chembiochem : a European journal of chemical biology.

[60]  P. Hsieh,et al.  The kinetics of spontaneous DNA branch migration. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[61]  H. Sugiyama,et al.  Two-dimensional DNA origami assemblies using a four-way connector. , 2011, Chemical communications.

[62]  Wael Mamdouh,et al.  Single-molecule chemical reactions on DNA origami. , 2010, Nature nanotechnology.

[63]  N. Seeman,et al.  Crystalline two-dimensional DNA-origami arrays. , 2011, Angewandte Chemie.

[64]  Shawn M. Douglas,et al.  DNA-nanotube-induced alignment of membrane proteins for NMR structure determination , 2007, Proceedings of the National Academy of Sciences.

[65]  Mark Bathe,et al.  A primer to scaffolded DNA origami , 2011, Nature Methods.

[66]  J. Shay,et al.  Normal human chromosomes have long G-rich telomeric overhangs at one end. , 1997, Genes & development.

[67]  Hari K. K. Subramanian,et al.  The label-free unambiguous detection and symbolic display of single nucleotide polymorphisms on DNA origami. , 2011, Nano letters.

[68]  Nadrian C. Seeman,et al.  Translation of DNA Signals into Polymer Assembly Instructions , 2004, Science.

[69]  T. Kelly,et al.  Methylation‐Sensitive Single‐Molecule Analysis of Chromatin Structure , 2010, Current protocols in molecular biology.

[70]  M. G. Finn,et al.  Click Chemistry: Diverse Chemical Function from a Few Good Reactions. , 2001, Angewandte Chemie.

[71]  K. Sharpless,et al.  Click-Chemie: diverse chemische Funktionalität mit einer Handvoll guter Reaktionen , 2001 .

[72]  Laurence H. Hurley,et al.  DNA and its associated processes as targets for cancer therapy , 2002, Nature Reviews Cancer.

[73]  Hao Yan,et al.  Self-assembled DNA nanostructures for distance-dependent multivalent ligand-protein binding. , 2008, Nature nanotechnology.

[74]  Alfonso Mondragón,et al.  Crystal structure of a bacterial topoisomerase IB in complex with DNA reveals a secondary DNA binding site. , 2010, Structure.

[75]  Hao Yan,et al.  DNA-origami-directed self-assembly of discrete silver-nanoparticle architectures. , 2010, Angewandte Chemie.

[76]  N. Seeman,et al.  A robust DNA mechanical device controlled by hybridization topology , 2002, Nature.

[77]  Masayuki Endo,et al.  Visualization of dynamic conformational switching of the G-quadruplex in a DNA nanostructure. , 2010, Journal of the American Chemical Society.

[78]  Wang Xiaohong,et al.  A new fluorescent quantitative polymerase chain reaction technique. , 2002, Analytical biochemistry.

[79]  N. Reich,et al.  Conformational Transitions as Determinants of Specificity for the DNA Methyltransferase EcoRI* , 2006, Journal of Biological Chemistry.

[80]  Masayuki Endo,et al.  Regulation of DNA methylation using different tensions of double strands constructed in a defined DNA nanostructure. , 2010, Journal of the American Chemical Society.

[81]  Shinsuke Sando,et al.  Scanning of guanine–guanine mismatches in DNA by synthetic ligands using surface plasmon resonance , 2001, Nature Biotechnology.

[82]  Manfred Auer,et al.  Single‐bead, Single‐molecule, Single‐cell Fluorescence , 2008, Annals of the New York Academy of Sciences.

[83]  S. Hell Microscopy and its focal switch , 2008, Nature Methods.

[84]  A. Turberfield,et al.  Direct observation of stepwise movement of a synthetic molecular transporter. , 2011, Nature nanotechnology.

[85]  J. Reif,et al.  Finite-size, fully addressable DNA tile lattices formed by hierarchical assembly procedures. , 2006, Angewandte Chemie.

[86]  N. Pierce,et al.  A synthetic DNA walker for molecular transport. , 2004, Journal of the American Chemical Society.

[87]  Morten Meldal,et al.  Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(i)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. , 2002, The Journal of organic chemistry.

[88]  Hao Yan,et al.  Scaffolded DNA origami of a DNA tetrahedron molecular container. , 2009, Nano letters.

[89]  M. Komiyama,et al.  Stepwise and reversible nanopatterning of proteins on a DNA origami scaffold. , 2010, Chemical communications.

[90]  Hao Yan,et al.  Spatially addressable multiprotein nanoarrays templated by aptamer-tagged DNA nanoarchitectures. , 2007, Journal of the American Chemical Society.

[91]  N. Seeman Nucleic acid junctions and lattices. , 1982, Journal of theoretical biology.

[92]  Norio Teramae,et al.  Simultaneous recognition of nucleobase and sites of DNA damage: effect of tethered cation on the binding affinity. , 2009, Biochimica et biophysica acta.

[93]  Michael J Rust,et al.  Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) , 2006, Nature Methods.

[94]  Naoki Sugimoto,et al.  Molecular crowding of the cosolutes induces an intramolecular i-motif structure of triplet repeat DNA oligomers at neutral pH. , 2010, Chemical communications.

[95]  D. Meldrum,et al.  Stability of DNA origami nanoarrays in cell lysate. , 2011, Nano letters.

[96]  Dirk-Peter Herten,et al.  High-resolution colocalization of single molecules within the resolution gap of far-field microscopy. , 2005, Chemphyschem : a European journal of chemical physics and physical chemistry.

[97]  Norio Teramae,et al.  Effect of the bases flanking an abasic site on the recognition of nucleobase by amiloride. , 2010, Biochimica et biophysica acta.

[98]  Per Thyberg,et al.  Gene expression analysis using single molecule detection. , 2003, Nucleic acids research.

[99]  J. Marko,et al.  How do site-specific DNA-binding proteins find their targets? , 2004, Nucleic acids research.

[100]  Hao Yan,et al.  Self-assembling a molecular pegboard. , 2005, Journal of the American Chemical Society.

[101]  Robert B Best,et al.  Effect of flexibility and cis residues in single-molecule FRET studies of polyproline , 2007, Proceedings of the National Academy of Sciences.

[102]  S. Turner,et al.  Zero-Mode Waveguides for Single-Molecule Analysis at High Concentrations , 2003, Science.

[103]  J. Langmore,et al.  Long G Tails at Both Ends of Human Chromosomes Suggest a C Strand Degradation Mechanism for Telomere Shortening , 1997, Cell.

[104]  F. Simmel,et al.  Single-molecule kinetics and super-resolution microscopy by fluorescence imaging of transient binding on DNA origami. , 2010, Nano letters.

[105]  N. Seeman,et al.  A Proximity-Based Programmable DNA Nanoscale Assembly Line , 2010, Nature.

[106]  S. Shuman,et al.  Intramolecular synapsis of duplex DNA by vaccinia topoisomerase , 1997, The EMBO journal.

[107]  W. Eaton,et al.  Polyproline and the "spectroscopic ruler" revisited with single-molecule fluorescence. , 2005, Proceedings of the National Academy of Sciences of the United States of America.