Detection of multiple impedance obstacles by non-iterative topological gradient based methods

Abstract We investigate a fast, one-step imaging method of multiple 2D and 3D acoustic obstacles fully-coated by a complex surface impedance with either monochromatic or multi-frequency noisy data. Introducing the topological gradient of the misfit functional as a limit of shape derivatives, closed-form expressions of the obstacle indicator are derived using Fourier and Mie series expansions of the radiating solution. We provide a wide variety of numerical experiments that assesses the performance and limitations of the one step single and multi-frequency imaging strategies when dealing both with full and limited aperture measurements.

[1]  O. Dorn,et al.  Level set methods for inverse scattering , 2006 .

[2]  Fatemeh Pourahmadian,et al.  Why the high-frequency inverse scattering by topological sensitivity may work , 2015, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[3]  Weng Cho Chew Recurrence Relations for Three-Dimensional Scalar Addition Theorem , 1992 .

[4]  Tzu-Chu Lin On an integral equation approach for the exterior Robin problem for the Helmholtz equation , 1987 .

[5]  Bojan B. Guzina,et al.  From imaging to material identification: A generalized concept of topological sensitivity , 2007 .

[6]  Bessem Samet,et al.  The topological asymptotic expansion for the Maxwell equations and some applications , 2005 .

[7]  J. Keller,et al.  Exact non-reflecting boundary conditions , 1989 .

[8]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[9]  Frédérique Le Louër,et al.  A spectrally accurate method for the direct and inverse scattering problems by multiple 3D dielectric obstacles , 2018 .

[10]  Salim Meddahi,et al.  Analysis of a new BEM‐FEM coupling for two‐dimensional fluid‐solid interaction , 2005 .

[11]  Frédérique Le Louër,et al.  Spectrally accurate numerical solution of hypersingular boundary integral equations for three-dimensional electromagnetic wave scattering problems , 2014, J. Comput. Phys..

[12]  Mourad Sini,et al.  Three-dimensional acoustic scattering by complex obstacles: the accuracy issue , 2010 .

[13]  Roland Potthast,et al.  A study on orthogonality sampling , 2010 .

[14]  Hongkai Zhao,et al.  A phase and space coherent direct imaging method. , 2009, The Journal of the Acoustical Society of America.

[15]  Roland Griesmaier,et al.  Multi-frequency orthogonality sampling for inverse obstacle scattering problems , 2011 .

[16]  Fioralba Cakoni,et al.  Integral equations for shape and impedance reconstruction in corrosion detection , 2010 .

[17]  A. Kirsch,et al.  A simple method for solving inverse scattering problems in the resonance region , 1996 .

[18]  Fioralba Cakoni,et al.  Acoustic inverse scattering using topological derivative of far-field measurements-based L2 cost functionals , 2013 .

[19]  R. Feijóo,et al.  Topological sensitivity analysis , 2003 .

[20]  Fioralba Cakoni,et al.  The Determination of the Surface Impedance of a Partially Coated Obstacle from Far Field Data , 2004, SIAM J. Appl. Math..

[21]  Yong-Ki Ma,et al.  A study on the topological derivative-based imaging of thin electromagnetic inhomogeneities in limited-aperture problems , 2014 .

[22]  Bojan B. Guzina,et al.  Small-inclusion asymptotic of misfit functionals for inverse problems in acoustics , 2006 .

[23]  Josselin Garnier,et al.  Stability and Resolution Analysis for a Topological Derivative Based Imaging Functional , 2012, SIAM J. Control. Optim..

[24]  Houssem Haddar,et al.  On Simultaneous Identification of the Shape and Generalized Impedance Boundary Condition in Obstacle Scattering , 2012, SIAM J. Sci. Comput..

[25]  G. Vial,et al.  Topological sensitivity analysis for the modified Helmholtz equation under an impedance condition on the boundary of a hole , 2015 .

[26]  Mourad Sini,et al.  On the Uniqueness and Reconstruction of Rough and Complex Obstacles from Acoustic Scattering Data , 2011, Comput. Methods Appl. Math..

[27]  Roland Potthast,et al.  The point-source method for 3D reconstructions for the Helmholtz and Maxwell equations , 2006 .

[28]  Vincent Gibiat,et al.  Time domain topological gradient and time reversal analogy: an inverse method for ultrasonic target detection , 2005 .

[29]  R. Potthast Point Sources and Multipoles in Inverse Scattering Theory , 2018 .

[30]  J. Nédélec Acoustic and electromagnetic equations , 2001 .

[31]  Fioralba Cakoni,et al.  Direct imaging of small scatterers using reduced time dependent data , 2017, J. Comput. Phys..

[32]  Bojan B. Guzina,et al.  Experimental validation of the topological sensitivity approach to elastic-wave imaging , 2013 .

[33]  R. Kress,et al.  Inverse Acoustic and Electromagnetic Scattering Theory , 1992 .

[34]  Yong-Ki Ma,et al.  Analysis of Topological Derivative Function for a Fast Electromagnetic Imaging of Perfectly Conducing Cracks , 2012 .

[35]  Houssem Haddar,et al.  On the Fréchet Derivative for Obstacle Scattering with an Impedance Boundary Condition , 2004, SIAM J. Appl. Math..

[36]  Gen Nakamura,et al.  Reconstruction of the Shape and Surface Impedance from Acoustic Scattering Data for an Arbitrary Cylinder , 2007, SIAM J. Appl. Math..

[37]  D. Mackowski,et al.  Analysis of radiative scattering for multiple sphere configurations , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[38]  Dominique Lesselier,et al.  Level set methods for inverse scattering—some recent developments , 2009 .

[39]  Jan Sokolowski,et al.  On the Topological Derivative in Shape Optimization , 1999 .

[40]  B. Tomas Johansson,et al.  Determining Planar Multiple Sound-Soft Obstacles from Scattered Acoustic Fields , 2010, Journal of Mathematical Imaging and Vision.

[41]  H. Haddar,et al.  A quasi-backscattering problem for inverse acoustic scattering in the Born regime , 2015 .

[42]  R. Kress,et al.  Inverse scattering for shape and impedance , 2001 .

[43]  Antoine Henrot,et al.  Variation et optimisation de formes : une analyse géométrique , 2005 .

[44]  José M. Vega,et al.  Defect Detection from Multi-frequency Limited Data via Topological Sensitivity , 2015, Journal of Mathematical Imaging and Vision.

[45]  Bessem Samet,et al.  The Topological Asymptotic for the Helmholtz Equation with Dirichlet Condition on the Boundary of an Arbitrarily Shaped Hole , 2004, SIAM J. Control. Optim..

[46]  G. Feijoo,et al.  A new method in inverse scattering based on the topological derivative , 2004 .

[47]  Ana Carpio,et al.  Topological Derivatives for Shape Reconstruction , 2008 .

[48]  Won-Kwang Park Analysis of a multi-frequency electromagnetic imaging functional for thin, crack-like electromagnetic inclusions , 2014 .

[49]  Won-Kwang Park,et al.  Analysis of multi-frequency subspace migration weighted by natural logarithmic function for fast imaging of two-dimensional thin, arc-like electromagnetic inhomogeneities , 2014, Comput. Math. Appl..

[50]  Bessem Samet,et al.  The Topological Asymptotic for the Helmholtz Equation , 2003, SIAM J. Control. Optim..

[51]  Ivan G. Graham,et al.  A high-order algorithm for obstacle scattering in three dimensions , 2004 .

[52]  Won-Kwang Park,et al.  Multi-frequency topological derivative for approximate shape acquisition of curve-like thin electrom , 2012, 1207.0582.

[53]  Ana Carpio,et al.  Solving inhomogeneous inverse problems by topological derivative methods , 2008 .

[54]  María-Luisa Rapún,et al.  Topological Sensitivity for Solving Inverse Multiple Scattering Problems in Three-dimensional Electromagnetism. Part I: One Step Method , 2017, SIAM J. Imaging Sci..

[55]  Won-Kwang Park,et al.  NON-ITERATIVE IMAGING OF THIN ELECTROMAGNETIC INCLUSIONS FROM MULTI-FREQUENCY RESPONSE MATRIX , 2010 .

[56]  Andreas Kirsch,et al.  Characterization of the shape of a scattering obstacle using the spectral data of the far field operator , 1998 .

[57]  Won-Kwang Park,et al.  Performance analysis of multi-frequency topological derivative for reconstructing perfectly conducting cracks , 2017, J. Comput. Phys..