A finite volume spectral element method for solving magnetohydrodynamic (MHD) equations

[1]  H. Alfvén,et al.  Existence of Electromagnetic-Hydrodynamic Waves , 1942, Nature.

[2]  J. A. Shercliff Steady motion of conducting fluids in pipes under transverse magnetic fields , 1953, Mathematical Proceedings of the Cambridge Philosophical Society.

[3]  Thomas S. Lundgren,et al.  Duct flow in magnetohydrodynamics , 1961 .

[4]  A. A. Samarskii,et al.  Homogeneous difference schemes , 1962 .

[5]  Richard R. Gold,et al.  Magnetohydrodynamic pipe flow. Part 1 , 1962, Journal of Fluid Mechanics.

[6]  A. A. Samarskii,et al.  Homogeneous difference schemes on non-uniform nets☆ , 1963 .

[7]  J. C. R. Hunt,et al.  Magnetohydrodynamic flow in rectangular ducts , 1965, Journal of Fluid Mechanics.

[8]  P. Smith Some asymptotic extremum principles for magnetohydrodynamic pipe flow , 1971 .

[9]  John S. Walker,et al.  MHD flow in conducting circular expansions with strong transverse magnetic fields , 1974 .

[10]  R. Holroyd An experimental study of the effects of wall conductivity, non-uniform magnetic fields and variable area ducts on liquid metal flows at high Hartmann number. Part 2. Ducts with conducting walls , 1979, Journal of Fluid Mechanics.

[11]  MHD flow in a rectangular duct with pairs of conducting and non-conducting walls in the presence of a non-uniform magnetic field , 1980 .

[12]  Bani Singh,et al.  Finite element method in magnetohydrodynamic channel flow problems , 1982 .

[13]  Genki Yagawa,et al.  Finite element analysis of magnetohydrodynamics and its application to lithium blanket design of a fusion reactor , 1982 .

[14]  Bani Singh,et al.  Heat transfer for MHD flow through a rectangular pipe with discontinuity in wall temperatures , 1982 .

[15]  A. Patera A spectral element method for fluid dynamics: Laminar flow in a channel expansion , 1984 .

[16]  Bani Singh,et al.  Finite element method for unsteady MHD flow through pipes with arbitrary wall conductivity , 1984 .

[17]  J. Ramos,et al.  Magnetohydrodynamic channel flow study , 1986 .

[18]  M. Sezgin,et al.  Magnetohydrodynamic flow in a rectangular duct , 1987 .

[19]  T. A. Zang,et al.  Spectral methods for fluid dynamics , 1987 .

[20]  M. Tezer-Sezgin,et al.  Finite element method for solving mhd flow in a rectangular duct , 1989 .

[21]  John S. Walker,et al.  Three-dimensional MHD flow in insulating circular ducts in non-uniform transverse magnetic fields , 1989 .

[22]  Zhiqiang Cai,et al.  On the finite volume element method , 1990 .

[23]  A. Sterl,et al.  Numerical simulation of liquid-metal MHD flows in rectangular ducts , 1990, Journal of Fluid Mechanics.

[24]  J. Ramos,et al.  Finite difference and finite element methods for mhd channel flows , 1990 .

[25]  Zhiqiang Cai,et al.  The finite volume element method for diffusion equations on general triangulations , 1991 .

[26]  Seungsoo Lee,et al.  Magnetohydrodynamic steady flow computations in three dimensions , 1991 .

[27]  David J. Silvester,et al.  ANALYSIS OF LOCALLY STABILIZED MIXED FINITE-ELEMENT METHODS FOR THE STOKES PROBLEM , 1992 .

[28]  William F. Mitchell,et al.  Optimal Multilevel Iterative Methods for Adaptive Grids , 1992, SIAM J. Sci. Comput..

[29]  Finite element analysis of magnetohydrodynamic pipe flow , 1993 .

[30]  Koulis Pericleous,et al.  The CFD analysis of simple parabolic and elliptic MHD flows , 1994 .

[31]  T. Barth Aspects of Unstructured Grids and Finite-Volume Solvers for the Euler and Navier-Stokes Equations , 1994 .

[32]  Weeratunge Malalasekera,et al.  An introduction to computational fluid dynamics - the finite volume method , 2007 .

[33]  Koulis Pericleous,et al.  The numerical modelling of DC electromagnetic pump and brake flow , 1995 .

[34]  L. Gardner,et al.  A two dimensional bi-cubic B-spline finite element: used in a study of MHD-duct flow , 1995 .

[35]  Z. Demendy,et al.  A new algorithm for solution of equations of MHD channel flows at moderate Hartmann numbers , 1997 .

[36]  Huang Jianguo,et al.  On the Finite Volume Element Method for General Self-Adjoint Elliptic Problems , 1998 .

[37]  Suwon Cho,et al.  The magnetic field and performance calculations for an electromagnetic pump of a liquid metal , 1998 .

[38]  A. Meir,et al.  Analysis and Numerical Approximation of a Stationary MHD Flow Problem with Nonideal Boundary , 1999 .

[39]  C. Chan,et al.  Solution of incompressible flows with or without a free surface using the finite volume method on unstructured triangular meshes , 1999 .

[40]  Panagiotis Chatzipantelidis,et al.  A finite volume method based on the Crouzeix–Raviart element for elliptic PDE's in two dimensions , 1999, Numerische Mathematik.

[41]  C. Bailey,et al.  Discretisation procedures for multi-physics phenomena , 1999 .

[42]  Richard E. Ewing,et al.  Element Approximations of Nonlocal in Time One � dimensional Flows in Porous Media , 1998 .

[43]  C. Chainais-Hillairet Second‐order finite‐volume schemes for a non‐linear hyperbolic equation: error estimate , 2000 .

[44]  R. Eymard,et al.  Finite Volume Methods , 2019, Computational Methods for Fluid Dynamics.

[45]  K. Barrett Duct flow with a transverse magnetic field at high Hartmann numbers , 2001 .

[46]  P. Oliveira ON THE NUMERICAL IMPLEMENTATION OF NONLINEAR VISCOELASTIC MODELS IN A FINITE-VOLUME METHOD , 2001 .

[47]  Magnetic levitation fluid dynamics , 2001 .

[48]  W. Habashi,et al.  A finite element method for magnetohydrodynamics , 2001 .

[49]  Chenghu Zhou,et al.  Simulating the hydraulic characteristics of the lower Yellow River by the finite‐volume technique , 2002 .

[50]  K. S. Erduran,et al.  Performance of finite volume solutions to the shallow water equations with shock‐capturing schemes , 2002 .

[51]  Tao Lin,et al.  On the Accuracy of the Finite Volume Element Method Based on Piecewise Linear Polynomials , 2001, SIAM J. Numer. Anal..

[52]  A finite volume approach for unsteady viscoelastic fluid flows , 2002 .

[53]  Dual Reciprocity Boundary Element Method for Magnetohydrodynamic Flow Using Radial Basis Functions , 2002 .

[54]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .

[55]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[56]  H. Takhar,et al.  Unsteady mhd flow and heat transfer on a rotating disk in an ambient fluid , 2002 .

[57]  Yang Shiyou,et al.  The application of interpolating MLS approximations to the analysis of MHD flows , 2003 .

[58]  C. Bailey,et al.  Dynamic solid mechanics using finite volume methods , 2003 .

[59]  V. Thomée,et al.  Error estimates for a finite volume element method for parabolic equations in convex polygonal domains , 2004 .

[60]  Tony W. H. Sheu,et al.  Development of a convection–diffusion‐reaction magnetohydrodynamic solver on non‐staggered grids , 2004 .

[61]  Maria Lukacova-Medvidova,et al.  Well-balanced finite volume evolution Galerkin methods for the shallow water equations with source terms , 2005 .

[62]  M. Tezer-Sezgin,et al.  The finite element method for MHD flow at high Hartmann numbers , 2005 .

[63]  Mehdi Dehghan,et al.  On the solution of an initial‐boundary value problem that combines Neumann and integral condition for the wave equation , 2005 .

[64]  Moujin Zhang,et al.  Solving the MHD equations by the space-time conservation element and solution element method , 2006, J. Comput. Phys..

[65]  A. I. Nesliturk,et al.  Finite element method solution of electrically driven magnetohydrodynamic flow , 2006 .

[66]  P. Lorrain,et al.  Magneto-Fluid Dynamics , 2006 .

[67]  Valdis Bojarevics,et al.  Comparison of MHD models for aluminium reduction cells , 2006 .

[68]  Mehdi Dehghan,et al.  Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices , 2006, Math. Comput. Simul..

[69]  Carol S. Woodward,et al.  A fully implicit numerical method for single-fluid resistive magnetohydrodynamics , 2006, J. Comput. Phys..

[70]  Yanping Chen,et al.  Finite volume element method with interpolated coefficients for two-point boundary value problem of semilinear differential equations , 2007 .

[71]  Andrea Mignone A simple and accurate Riemann solver for isothermal MHD , 2007, J. Comput. Phys..

[72]  Björn Sjögreen,et al.  Development of low dissipative high order filter schemes for multiscale Navier-Stokes/MHD systems , 2006, J. Comput. Phys..

[73]  Valdis Bojarevics,et al.  Pseudo-spectral solutions for fluid flow and heat transfer in electro-metallurgical applications , 2007 .

[74]  Bin Teng,et al.  A finite volume solution of wave forces on submarine pipelines , 2007 .

[75]  Jean-Luc Guermond,et al.  An interior penalty Galerkin method for the MHD equations in heterogeneous domains , 2007, J. Comput. Phys..

[76]  Ramakanth Munipalli,et al.  A current density conservative scheme for incompressible MHD flows at a low magnetic Reynolds number. Part I: On a rectangular collocated grid system , 2007, J. Comput. Phys..

[77]  Jianqiang Han,et al.  An adaptive moving mesh method for two-dimensional ideal magnetohydrodynamics , 2007, J. Comput. Phys..

[78]  Ching-Long Lin,et al.  An Unstructured Finite Volume Approach for Structural Dynamics in Response to Fluid Motions. , 2008, Computers & structures.

[79]  Münevver Tezer-Sezgin,et al.  Time‐domain BEM solution of convection–diffusion‐type MHD equations , 2008 .

[80]  S. Ravindran Linear feedback control and approximation for a system governed by unsteady MHD equations , 2008 .

[81]  K. Pericleous,et al.  Thermoelectric MHD in dendritic solidification , 2009 .

[82]  M. Dehghan,et al.  Meshless Local Petrov--Galerkin (MLPG) method for the unsteady magnetohydrodynamic (MHD) flow through pipe with arbitrary wall conductivity , 2009 .

[83]  Robert E. Harris,et al.  High-Order Adaptive Quadrature-Free Spectral Volume Method on Unstructured Grids , 2008 .

[84]  Mehdi Dehghan,et al.  Meshless local boundary integral equation (LBIE) method for the unsteady magnetohydrodynamic (MHD) flow in rectangular and circular pipes , 2009, Comput. Phys. Commun..

[85]  S. Mishra,et al.  Splitting based finite volume schemes for ideal MHD equations , 2009, J. Comput. Phys..