Erratum to: Decay Rates to Equilibrium for Nonlinear Plate Equations with Degenerate, Geometrically-Constrained Damping

We analyze the convergence to equilibrium of solutions to the nonlinear Berger plate evolution equation in the presence of localized interior damping (also referred to as geometrically constrained damping). Utilizing the results in (Geredeli et al. in J. Differ. Equ. 254:1193---1229, 2013), we have that any trajectory converges to the set of stationary points $\mathcal{N}$ . Employing standard assumptions from the theory of nonlinear unstable dynamics on the set $\mathcal{N}$ , we obtain the rate of convergence to an equilibrium. The critical issue in the proof of convergence to equilibria is a unique continuation property (which we prove for the Berger evolution) that provides a gradient structure for the dynamics. We also consider the more involved von Karman evolution, and show that the same results hold assuming a unique continuation property for solutions, which is presently a challenging open problem.

[1]  R. Sakamoto Mixed problems for hyperbolic equations I Energy inequalities , 1970 .

[2]  Igor Chueshov,et al.  Global Attractor for a Wave Equation with Nonlinear Localized Boundary Damping and a Source Term of Critical Exponent , 2009 .

[3]  Alain Haraux,et al.  The Łojasiewicz gradient inequality in the infinite-dimensional Hilbert space framework , 2011 .

[4]  Igor Chueshov,et al.  Von Karman Evolution Equations , 2010 .

[5]  Convergence of solutions of von Karman evolution equations to equilibria , 2012 .

[6]  Alain Haraux,et al.  APPLICATIONS OF THE ŁOJASIEWICZ–SIMON, GRADIENT INEQUALITY TO GRADIENT-LIKE EVOLUTION EQUATIONS , 2009 .

[7]  Sergey Zelik,et al.  Finite-dimensional attractors for the quasi-linear strongly-damped wave equation , 2008, 0807.5078.

[8]  M. Tucsnak Semi‐internal Stabilization for a Non‐linear Bernoulli–Euler Equation , 1996 .

[9]  A.Kh. Khanmamedov,et al.  Global attractors for von Karman equations with nonlinear interior dissipation , 2006 .

[10]  A. Haraux,et al.  Compactness of trajectories to some nonlinear second order evolution equations and applications , 2013 .

[11]  A. Pazoto,et al.  Asymptotic Behavior of a Bernoulli-Euler Type Equation with Nonlinear Localized Damping , 2005 .

[12]  Irena Lasiecka,et al.  Global existence, uniqueness and regularity of solutions to a von Kármán system with nonlinear boundary dissipation , 1996, Differential and Integral Equations.

[13]  H. Berger A new approach to the analysis of large deflections of plates , 1954 .

[14]  J. Lagnese Boundary Stabilization of Thin Plates , 1987 .

[15]  H. Yassine Asymptotic behavior and decay rate estimates for a class of semilinear evolution equations of mixed order , 2011 .

[16]  R. Chill,et al.  Convergence to steady states in asymptotically autonomous semilinear evolution equations , 2003 .

[17]  Y. Y. Belov,et al.  Inverse Problems for Partial Differential Equations , 2002 .

[18]  I. Chueshov Introduction to the Theory of In?nite-Dimensional Dissipative Systems , 2002 .

[19]  M. Vishik,et al.  Attractors of Evolution Equations , 1992 .

[20]  Viorel Barbu,et al.  Differential equations in Banach spaces , 1976 .

[21]  J. Goldstein Semigroups of Linear Operators and Applications , 1985 .

[22]  I. Lasiecka,et al.  Long-time Behavior of Second Order Evolution Equations With Nonlinear Damping , 2008 .

[23]  I. Lasiecka,et al.  Hadamard Well-posedness of Weak Solutions in Nonlinear Dynamic Elasticity-full von Karman Systems , 2002 .

[24]  Alain Haraux,et al.  Decay estimates to equilibrium for some evolution equations with an analytic nonlinearity , 2001 .

[25]  Convergence and decay estimates for a class of second order dissipative equations involving a non-negative potential energy , 2011 .

[26]  G. Raugel,et al.  Chapter 17 - Global Attractors in Partial Differential Equations , 2002 .

[27]  Boris Hasselblatt,et al.  Handbook of Dynamical Systems , 2010 .

[28]  F. Bucci,et al.  Finite-dimensional attractor for a composite system of wave/plate equations with localized damping , 2009, 0912.5464.

[29]  A. Eden,et al.  Exponential Attractors for Dissipative Evolution Equations , 1995 .

[30]  Igor Chueshov,et al.  Long-time dynamics of von Karman semi-flows with non-linear boundary/interior damping , 2007 .

[31]  Richard E. Mortensen,et al.  Infinite-Dimensional Dynamical Systems in Mechanics and Physics (Roger Temam) , 1991, SIAM Rev..

[32]  J. U. Kim Exact semi-internal control of an Euler-Bernoulli equation , 1992 .

[33]  Uniqueness of Continuation Theorems , 2000 .

[34]  Global attractor for an extensible beam equation with localized nonlinear damping and linear memory , 2011 .

[35]  A. Khanmamedov Global attractors for the plate equation with a localized damping and a critical exponent in an unbounded domain , 2006 .

[36]  I. Chueshov STRONG SOLUTIONS AND THE ATTRACTOR OF THE VON KÁRMÁN EQUATIONS , 1991 .

[37]  Irena Lasiecka,et al.  Smooth attractors of finite dimension for von Karman evolutions with nonlinear frictional damping localized in a boundary layer , 2012, 1201.6072.

[38]  Igor Chueshov,et al.  Global attractors for von Karman evolutions with a nonlinear boundary dissipation , 2004 .

[39]  A. Babin Chapter 14 - Global Attractors in PDE , 2006 .

[40]  Sergey Zelik,et al.  Chapter 3 Attractors for Dissipative Partial Differential Equations in Bounded and Unbounded Domains , 2008 .

[41]  I. N. Kostin Rate of attraction to a non‐hyperbolic attractor , 1998 .

[42]  A. Ruiz Unique continuation for weak solutions of the wave equation plus a potential , 1992 .

[43]  FINITE DIMENSIONALITY OF THE ATTRACTOR FOR A SEMILINEAR WAVE EQUATION WITH NONLINEAR BOUNDARY DISSIPATION , 2009 .

[44]  A. Milani,et al.  Parabolic equations of Von Karman type on Kähler manifolds, II , 2007 .

[45]  R. Showalter Monotone operators in Banach space and nonlinear partial differential equations , 1996 .

[46]  L. Hörmander Linear Partial Differential Operators , 1963 .

[47]  Igor Chueshov,et al.  Attractors for Second-Order Evolution Equations with a Nonlinear Damping , 2004 .

[48]  Tataru Daniel,et al.  Unique continuation for solutions to pde's; between hörmander's theorem and holmgren' theorem , 1995 .

[49]  I. Lasiecka Mathematical control theory of couple PDEs , 2002 .